Биологический каталог




Нейрохимия: Учебник для биологических и медицинских вузов

Автор И.П.Ашмарин, А.Е.Антипенко, В.В.Ашапкин, Г.Г.Вольский, С.А.Дамбинова и

и или изолированными рецепторными белками. В настоящее время существует хорошо развитая кинетическая теория рецептии и методы определения физико-химических параметров процесса образования комплекса лиганд-рецептор. Такой физико-химический анализ позволяет сделать определенные заключения о структуре активных центров нейрорецеп-торов, в частности, выяснить природу некоторых функциональных групп, которые ответственны за первую стадию взаимодействия лиганда с акцептором.

Для того чтобы кратко ознакомиться с количественной теорией взаимодействия веществ со своими рецепторами, рассмотрим простейшие условия, когда одна молекула лиганда взаимодействует с одним центром связывания:

L + Qtf В

К;

где L — лиганд; Q — центр связывания; В — комплекс лиганда со связывающим центром; К{ и K.j — кинетические константы. При динамическом равновесии скорость реакции образования комплекса В равна его скорости диссоциации, т.е. VL = V_,, тогда концентрация [В] вычисляется по формуле (1)

262

При этом предполагается, что L и Q взаимодействуют между собой по закону действующих масс, т.е. скорости реакций образования комплекса и его диссоциации прямо пропорциональны концентрациям компонентов в системе. Отношение констант прямой и обратной реакции называют константой сродства Кс (ассоциации). Она характеризует соотношение занятых и свободных участков связывания при данной концентрации лиганда. Обычно для описания параметров связывания используют величину, обратную константе сродства,—

— константу диссоциации. Эта константа соответствует величине, при которой происходит насыщение 50% связывающих участков:

с к/ л кс к,-

Если вместо константы сродства Кс использовать обратную ей величину Кд, то, подставив это значение в уравнение (1), характеризующее равновесную реакцию взаимодействия лиганда с рецептором, получим следующее уравнение:

1 к,+щ (2>

Приняв общее число рецепторов за 1, можно преобразовать уравнение (2) к виду, аналогичному уравнению Михаэлиса (3), которое используется в энзимологии для описания кинетики обратимых ферментативных реакций:

[В] _ [Ц , [ES] = [S] 1 КД+[Ц' [Е0] KS+[SY

где [ES] — концентрация комплекса фермент-субстрат; [S] —

263

концентрация субстрата и Ks — константа диссоциации комплекса; [Е0] — исходная концентрация субстрата.

Согласно этим уравнениям зависимость величины эффекта от дозы лиганда или фермента описывается гиперболой (экспериментальные кривые доза—эффект во многих случаях имеют именно такой вид). Чаще всего для работы пользуются графическим выражением зависимости эффекта не от концентрации, а от логарифма концентрации лиганда. Графически зависимость результатов может быть представлена разными способами, однако наиболее информативным способом расчета являются координаты Скэтчарда. Действительно, помимо равновесной константы связывания и общей концентрации центров связывания этот метод позволяет определить концентрацию свободного лиганда, соответствующую данной концентрации комплекса В. Константа диссоциации равна котангенсу угла наклона прямой. Отрезок на оси абсцисс от точки пересечения с прямой до начала координат соответствует максимальному уровню насыщения центров связывания (рис.8.5).

О Lw-Kd Концентрация лиганда Ш вЫАКС В

Рис. 8.5, Кривая насыщения (доза-эффект) (А) и график Скет-чарда, описывающий простейший случай взаимодействия: один лиганд — один рецептор (В)

Таким образом, представление результатов равновесного связывания в координатах Скэтчарда дает информацию о характере протекающего процесса и позволяет определить важные параметры лиганд-рецепторного взаимодействия — константу диссоциации и концентрацию центров, способных образовывать комплексы с нейромедиатором.

В качестве примера изучения рецепторного связывания нейромедиатора с белковыми компонентами на мембране нейрона приведем экспериментальные исследования глутаматных рецеп-264

торов радиолигандным методом. Так, исследования параметров связывания 3Н-глутамата с синаптическими мембранами, выделенными из коры больших полушарий головного мозга крыс, показали их зависимость от чистоты материала, способов хранения, условий проведения реакции связывания и др. При стандартизации всех указанных условий зависимость специфического связывания 3Н-глутамата с синаптическими мембранами имеет насыщающий характер (рис.8.6). Представление экспериментальных данных в координатах Скэтчарда свидетельствует о наличии на мембранах однородной популяции участков связывания с Кд - 89,4 нМ и Вмакс = 2,0 пмоль/мг белка.

8/1,пнмь/нМ*мг

20

В, имп/мин

то Ь

\ \

_>L

2 В, пмоль/мг бша

Рис.8.6. Кривая насыщения и график Скетчарда для глутамат-узнающих участков связывания на солюбилизате синаптических мембран из головного мозга крыс

Значение количества центров связывания (В), выраженное в СРМ (имп/мин), пересчитывается в фмоль/мг белка по следующей формуле:

265

(CPMo6-CPM,ic, ) A^f-lC

где A^ — молярная активность радиолиганда, Кю/моль; а — 2,210~12 pacn/мин (коэффициент перевода Кю в РМ); f — эффективность счета (определяется для каждого сцинтилляцион-ного счетчика); (СРМо6щ — СРМнесп) — разность счета связывания радиолиганда с рецептором в отсутствие (СРМо6щ) и в присутствии (СРМнеу1) немеченого радиолиганда; t — время счета (зависит от выбранной программы обсчета проб); С — концентрация белка, мг.

Для того чтобы отличить эти параметры связывания от неспецифического связывания и поглощения глутамата другими участками мембраны, существуют дополнительные экспериментальные приемы, в том числе проведение реакции в присутствии разных катионов. Истинное рецепторное связывание глутамата является Na*-независимым процессом, в то время как поглощение и транспорт этого нейромедиатора другими участками синапса происходит в присутствии высоких концентраций ионов Na.

Далее возникает вопрос, соответствуют ли эти независимые участки связывания самого глутамата тем рецепторным компонентам на мембране нейрона, которые способны вызывать физиологический ответ клетки на данный медиатор. Оказалось, что сродство и константа диссоциации, полученные экспериментальным биохимическим методом, находятся в пределах физиологических концентраций действия L-глутамата на нейроны позвоночных. Такие показатели реакции связывания нейромедиатора, как насыщаемость и обратимость, соответствуют аналогичным свойствам глутаматного рецептора, регистрируемым с помощью электрофизиологических методов. Более того, чувствительность к ряду известных агонистов и антагонистов, таких как NMDA, каинат, квисквалат и другие, была сходна с физиологическими ответами. Следует упомянуть, что характер связывания нейромедиатора в присутствии ионов Na существенно отличается от рецепторного взаимодействия и коррелирует с параметрами высокоаффинного поглощения L-глутамата клетками, регистрируемыми физиологически. Все это иллюстрирует пути оценки параметров связывания нейромедиатора и специфические трудности, возникающие при такой оценке.

Одним из основных подходов к изучению молекулярных свойств нейрорецепторов является изолирование индивидуальных

266

рецепторных белков, специфически связывающих нейромедиаторы или необратимо взаимодействующих с их антагонистами или бло-каторами. Так, прогресс в исследовании никотиновых холинорецепторов был обусловлен обнаружением а-бунгаротоксииа, который оказался специфическим блокатором этого типа рецепторов и позволил выделить мембранные белки и очистить их на основе радиолигандного метода. Наличие таких приемов дает возможность разграничить хеморецепторные процессы от ферментативного и транспортного метаболизма нейромедиаторов. Особенно это важно для изучения рецепторов аминокислотных медиаторов нервной ткани.

Изучение химической природы мембранных белков включает предварительное выделение, солюбилизацию (экстракцию), очистку и анализ очишенных компонентов. Причем применение классических методов структурного анализа для характеристики мембранных белков имеет свои сложности и особенности. Как правило, они обусловлены свойствами мембран и их компонентов, в частности, наличием липидных и гликолипид-ных структур. Проблемы, связанные с экстракцией белковых компонентов мембран, их очисткой и анализом, составляют специальный раздел мембранологии. Здесь будут рассмотрены лишь самые общие моменты.

Выбор метода солюбилизации зависит от цели исследования и имеет смысл только тогда, когда дает возможность сохранить нативные свойства рецепторного белка и исследовать его с помощью обычных биохимических подходов. Поэтому выбор со-любилизирующего агента на первом этапе может оказаться ключевым для анализа структуры и функции рецептора.

Существует целый ряд самых разнообразных солюбилизи-руюших агентов, пригодных для решения проблем мембранной биохимии. Наиболее надежными среди них являются неионные и ионные детергенты. В основе их действия лежит амфифиль-ная природа этих агентов, позволяющая им взаимодействовать и с гидрофильными, и с гидрофобными участками мембранных белков. Эффект детергента, разрушающего взаимосвязи в мембране, определяется двумя видами взаимодействия: детергент-белок и детергент—детергент. Большое значение имеет последнее взаимодействие, так как чем выше способность молекул детергента взаимодействовать друг с другом, тем меньше будет количество молекул, способных взаимодействовать с белками. Этот критерий мицеллообразования служит характеристикой детергента и его способности растворять те или иные белковые компоненты. Низкий коэффициент мицеллообразования харак-

267

терен для мягких солюбилизирующих агентов, таких как тритон Х=100, дезоксихолат натрия, дигитонин и другие, которые позволяют выделять нативные мембранные белки с сохранением их биологической активности. В то же время додецилсуль-фат натрия (ДСН) с высоким коэффициентом мицеллообразо-вания обладает большой связывающей способностью и значительно повреждает нативную конформацию белков. Как правило, этот детергент используется при анализе субъединичной структуры макромолекул, так как легко разрушает межмолекулярные связ

страница 53
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

Скачать книгу "Нейрохимия: Учебник для биологических и медицинских вузов" (21.4Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Химический каталог

Copyright © 2009
(30.06.2022)