Биологический каталог




Нейрохимия: Учебник для биологических и медицинских вузов

Автор И.П.Ашмарин, А.Е.Антипенко, В.В.Ашапкин, Г.Г.Вольский, С.А.Дамбинова и

азом, сигналом для включения рецепторов А1. Это позволяет лучше понять ряд физиологических эффектов, которые наблюдаются при срабатывании рецепторов А1: успокаивающие, седативные, противосудорожные. Иначе говоря, эти рецепторы выступают как защитники энергетических резервов мозга в экстремальных ситуациях. С этим же сопряжены их гипотензивные эффекты. Из периферических реакций на включение рецептора А1 отметим брадикардию и воздействие на автономные проводящие системы сердца. Адено-зин и его производные оказались перспективными средствами для лечения аритмий.

292

Из общих физиологических эффектов аденозиновьгх рецепторов А2 отметим стимуляцию глюконеогенеза и подавление агрегации тромбоцитов.

Рецепторы Р2, имеющие наибольшее сродство к АТФ и АФ4А и наименьшее к аденозину и АМФ, также делятся на несколько подтипов. В отличие от аденозиновьгх рецепторов среди них есть быстрые, канальные рецепторы (Р2х)> непосредственно индуцирующие миграцию ионов, — особенно Са2*. АТФ, воздействуя на эту систему, вызывает гипотензию, стимулируя в то же время сократительную деятельность сердца. Они участвуют в передаче сенсорных сигналов. Особого упоминания (для сопоставления с эффектами рецепторов аденозина) заслуживает периферический эффект такого макроэргического соединения, как АДФ —стимуляция тромбоцитов.

Рецепторы нейропептидов. Все рецепторы нейропептидов являются метаботропными, медленными рецепторами. Наиболее изучены опиатные рецепторы.

Опиаты — морфин и родственные ему соединения — известны в медицине с древних времен. Их применяли, как правило, в качестве обезболивающих и наркотических средств, способных влиять на психику человека. Однако опиатные рецепторы (ОР), которые являются объектами действия опиатов в ЦНС, открыты сравнительно недавно, в начале 70-х годов. Фармакологическими исследованиями было показано, что ОР связывают большое число синтетических и природных лигандов. Первыми изученными лигандами ОР были экзогенные вещества — морфин, дигидроморфин, норморфнн, леворфанол и др. Из алкалоидов растительного происхождения наиболее известны — налоксон, пентазоцин и налтрексон. Два последних обладают свойствами частичных антагонистов. Эндогенные пептиды — эндорфины, энкефалины и динорфины —взаимодействуют аналогично морфину и относятся к агонистам ОР.

ОР гетерогенны по составу, и классифицируют их на основе взаимодействия со специфическими лигандами. Они подразделяются на субтипы: мю-, дельта-, каппа-, сигма- и эпсилон-рецепторы. Принято считать, что морфин выявляет мю-тип рецепторов, Ала2, Лей5-энкефалин, дельторфины и некоторые другие аналоги энкефалинов — дельта-рецепторы, кетоциклазоцин и динорфины —каппа-рецепторы, N-аллилнорццклазоцин — сигма-рецепторы, а р-эндорфин —мю- и эпсилон-рецепторы. Вместе с тем следует помнить, что эти лиганды не обладают абсолютной специфичностью и могут частично взаимодействовать с разными субтипами О Р.

293

Связывание радиолигандов свидетельствует о различном распределении субтипов ОР по структурам головного мозга.

Для изучения биохимических характеристик опиатных рецепторов (структуры, молекулярной массы, изоэлектрических свойств) многие годы предпринимались попытки выделить их в нативном состоянии из биологических мембран мозга. Однако ОР оказались трудным объектом, они инактивировались под действием ионных детергентов, которые ранее успешно применялись для солюбилизации других рецепторов. Кроме того, попытка полного удаления липидного окружения из препаратов ОР также вела к инактивации.

Лишь использование неионных детергентов типа дигитони-на-глиоксихолата и CHAPS — позволяет солюбилизировать из мембран белки рецепторного комплекса с сохранением 50-70% опиатсвязывающей активности, ОР-рецепторы оказались ли-попротеидами. Роль липидных компонентов и окружения ОР в связывании опиоидов пока не ясна, однако, присутствие суль-фоцереброзидов существенно увеличивает уровень связывания агонистов с рецепторами, и было сделано предположение о том, что сульфоцереброзиды (кислые липиды) входят в активный центр ОР.

Собственно рецепторные лиганд-связывающие компоненты ОР имеют молекулярную массу порядка 45000-66000 дальтон. В целом ОР подобны другим метаботропным рецепторам. Взаимодействие с лигандом ведет к включению G-белков и, в конечном счеге, к подавлению аденилатциклазы. Интересно, что молекула рецептора обладает дефосфорилирующей активностью. Она усиливается теми же факторами, которые усиливают связывание опиатов. При этом дефосфорилирование изменяет ли-ганд-рецепторное взаимодействие.

Известно также, что активация опиатных рецепторов сопровождается повышением К+ проводимости мембраны и/или снижением Са2+ проводимости мембраны, что ведет к принципиально общему конечному результату — уменьшению входа Са2+ в пресинаптические окончания во время прохождения потенциала действия и к снижению количества высвобождаемого нейромедиатора (пресинаптическая модуляция) или гиперполяризации постсинаптической мембраны (постсинаптическая модуляция).

Ферменты-рецепторы. Название этого типа рецепторов вызывает некоторое недоумение, ибо конечный компонент мета-ботропных рецепторов является, как правило, ферментом, например циклазой или фосфолипазой. Однако последние служат лишь компонентом комплекса белков, составляющих мета-

294

ботропный рецептор. Медиатор при этом не взаимодействует непосредственно с ферментом. Существует, однако, ряд систем межнейрональной передачи сигнала, когда медиатор прямо действует на фермент. Приведем лишь один пример. Описанный в предыдущей главе относительно новый нейромедиатор нитро-ксид прямо активирует гуанилатциклазу и синтез цГМФ.

Выводы

1. Обязательным звеном передачи нервного импульса в химических синапсах являются рецепторы — образования, состоящие из белков и гликолипидных компонентов, которые с высокой специфичностью связывают нейромедиатор, меняют кон-формацию и обеспечивают трансформацию сигнала в изменения ионных потоков через мембрану и в образование вторичных мессенджеров в клетке.

2. По типу вызываемых медиатором процессов рецепторы делятся на две категории: 1) быстродействующие, содержащие в своей структуре ионный канал, открытие которого ведет к изменению потенциала мембраны; 2) медленнодействующие, состоящие из компонентов, периодически связывающихся друг с другом, которые после взаимодействия с нейромедиатором запускают цепь реакций, образующих вторичные молекулы — посредники, циклические нуклеотиды, диацилглицерол, ино-зитолфосфаты и др.

3. Одни и те же медиаторы в разных синапсах могут взаимодействовать с рецепторами разных типов (быстро- или медленнодействующими) и разных подтипов (по характеристикам открываемых ионных потоков, по виду индуцируемых вторичных посредников, по конечному возбуждающему или тормозному эффекту).

4. Современный уровень понимания структуры и механизма действия многих рецепторов (ацетилхолиновых, катехоламино-вых, глутаминовых и др.) таков, что оказалось возможным "собирать" активные рецепторы из компонентов вне клеток — в мембранах липосом — и даже индуцировать с помошью соответствующих мРНК их синтез, встраивание в мембраны и действие в клетках (ооцитах), не содержащих ранее этих образований.

5. Действие ряда важнейших фармакологических агентов, используемых при лечении заболеваний ЦНС, направлено на рецепторы нейромедиаторов — их активацию или подавление.

295

Глава 9 Нейропептиды

И.ПЛшмарищ Е.П.Каразеева

Важное место в химической передаче информации занимают нейропептиды (НЩ. По сравнению с другими системами межклеточной сигнализации пептидная система оказалась наиболее многочленной (сейчас открыто свыше 600 природных НП) и полифункциональной.

В категорию НП включают обычно малые и средние по размеру пептиды — от 2 до 50-60 аминокислотных остатков (а.о.). Более крупные пептиды, в число которых входит ряд гормонов, некоторые факторы роста клеток и ряд других факторов, содержат, как правило, свыше 100 а.о., и их относят обычно к категории регуляторных белков. Большинство НП представляет собой линейные пептиды. С-концевые аминокислоты в них нередко амидированы, N-концевые остатки глутаминовой кислоты часто представлены в виде пироглутамата Другие модификации аминокислотных остатков встречаются редко.

НП образуются в результате ограниченного ("прицельного") протеолиза больших пептидов-предшественников. Последние синтезируются на рибосомах, транспортируются далее в везикулы нервных окончаний, расщепляясь протеазами до конечных форм НП, и секретируются с помощью механизмов, подобных тем, которые описаны для медиаторов непептидной природы.

НП широко представлены в мозге и в периферической нервной системе. Содержание их в тканях варьирует преимущественно в пределах 10~~12 — 10"9М. В разных отделах и образованиях мозга, а также в нейронах разной специализации различия в содержании НП очень велики. Кроме того, в ряде органов и тканей не нервными клетками синтезируются и секретируются пептиды, идентичные или близкие многим НП. Это заставляет считать НП частью общей системы регуляторных пептидов (РП) организма. Однако это же порождает и некоторые терминологические трудности. Так, например, эндокринными железами, кардиомиоцитами, клетками желудочно-кишечного тракта и системы иммунитета образуются пептиды, способные прямо влиять на деятельность периферической и центральной нервной системы. Следует ли относить их к НП, хотя они имеют не нейрональное происхождение? По-видимому, следует, тем более, что почти во всех тщательно обследованных ситуациях в

296

ЦНС тоже обнаруживаются нейроны, синтезирующие пептид, идентичный найденному на периферии.

Многие из НП выполняют функции нейромедиаторов, передающих сигнал в пределах синапса, подобно уже описанным (см, гл.7) классическим нейромедиаторам непептидной природы. При этом они, как правило, "сотрудничают" с непептидными медиаторами. В одном и том же нервном окончании локализованы определенные комбинации непептидного нейромедиатора с одним, двумя, а иногда и тремя .НП. В зависимости от частоты и длительности импульсации они 'выделяются

страница 59
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

Скачать книгу "Нейрохимия: Учебник для биологических и медицинских вузов" (21.4Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Rambler's Top100 Химический каталог

Copyright © 2009
(21.09.2019)