Биологический каталог




Нейрохимия: Учебник для биологических и медицинских вузов

Автор И.П.Ашмарин, А.Е.Антипенко, В.В.Ашапкин, Г.Г.Вольский, С.А.Дамбинова и

ей миозина является представителем второй группы КМ-зависимых протеинкиназ. Регуляция с помощью КМ-киназы легких цепей миозина осуществляется по принципу "все или ничего". Так, в отсутствие КМ фермент практически не активен, а при действии комплекса Са-КМ его активность возрастает в 200-300 раз. Установлено, что АТФазная активность актомиозина мозга увеличивается в 2-3 раза при фос-форилировании миозина киназой легких цепей.

Как упоминалось, активность КМ-зависимых протеинкиназ модулируется аутофосфоршшрованием. Аутофосфорилирование 2 субъединиц (но не кальмодулина) киназы фосфорилазы приводит к значительному увеличению ее активности. Аутофосфорилирование регулирует также компартментализацию В-киназ в нервных клетках, как это показано на нейронах аплизии. В присутствии комплекса Са-кальмодулин или цАМФ происходит транслокация активности В-киназы в цитозоль из мембра-ноцитоскелетной фракции. В-киназа тесно ассоциирована с определенными белками цитоскелета и мембран: фосфорилирование этих белков, как показано на препаратах мозга крыс, приводит к ослаблению сродства В-киназ к мембранам и цито-скелету.

Очевидно, что изменения в содержании цитоплазматического Са2+ имеют множественные последствия для синаптической функции, особенно для экзоцитоза. Мишенью ряда регулирующих экзоцитоз лекарственных препаратов и антител может быть кальмодулин. Установлено, что запускаемая деполяризацией секреция вазопрессина и окситоцина из нервных терминалей гипофиза является Са-зависимой и не требует участия цАМФ или протеинкиназы С, причем комплекс Са2 -кальмодулин связывается с белками мембран секреторных гранул, представляющими собой, вероятно, субъединицы специфичной протеинкиназы. Следствием этого процесса является усиление экзоцитоза посредством слияния мембран секреторных гранул с цитоплаз-матической мембраной.

В секреции нейромедиаторов принимают участие протеин-

352

киназы В I и II типа, а также протеинкиназы А и С. Взаимодействие этих протеинкиназ отчетливо проявляется при фосфори-лировании синапсинов — специфических белков синаптических структур. Один из этих белков — синапсин I, составляющий 6% от общего белка высокоочищенных синаптических везикул и являющийся своеобразным "мостиком" между везикулами и ци-тоскелетом, фосфорилируется протеинкиназой В I типа и протеинкиназой А по одному остатку серина. Два других остатка серина в молекуле синапсина I фосфорилирует протеинкиназа В II типа и, вероятно, протеинкиназа С В нейронах найден так называемый протеин-Ш — белок, также связанный с синаптическими мембранами и по ряду свойств напоминающий синапсин I. Протеин-Ш по единственному остатку серина фосфори-лируют как протеинкиназа А, так и протеинкиназа В I типа. Очевидно, цАМФ- и Са-зависимое фосфорилирование синапсина I и протеина-III обеспечивает регуляцию секреции нейромедиаторов. Так, инъекция в синапс В-киназы II типа увеличивает секрецию, в то время как инъекция дефосфорилированно-го синапсина I угнетает высвобождение нейромедиаторов. Для эффективной секреции необходимо одновременное фосфорилирование синапсина I А-, В- и С-киназами. Секреция нейромедиаторов регулируется, по-видимому, разрывом связи фос-форилированного синапсина I с актином и тубулином. В результате везикулы высвобождаются из комплекса с белками цитоскелета и становится возможной Са-индукция экзоцитоза. Предполагается также, что сконцентрированные в синаптических окончаниях молекулы В-киназы II типа сами по себе являются стерическим препятствием для высвобождения медиаторов из секреторных везикул. Аутофосфорилирование киназы способствует ее диссоциации на субъединицы и, таким образом, стимулирует секрецию.

Важную роль в функционировании нейронов играет совместное фосфорилирование протеинкиназами А II типа и В II типа высокомолекулярного (Мг = 270 кД) белка МАР-2, сконцентрированного в дендритах нейронов. Как упоминалось, именно здесь локализована Р-субъединица А-киназы II типа, которая обладает высоким сродством к МАР-2 и является своеобразным "якорем" цАМФ-зависимой фосфорилирующей активности в дендритах. МАР-2 участвует в сборке микрбтрубочек: фосфорилирование этого белка киназами В и АII типа контролирует процесс сборки и, таким образом, может модулировать функциональную активность нейронов. МАР-2 фосфорилирует также протеинкиназа С; роль этого процесса в функционировании нейронов выясняется.

353

Предполагается, что комплекс МАР-2 — Р-субъединица А-киназы II типа может изменять проницаемость мембран нейронов для Na4* и К+ без фосфорилирования К-субъединицей киназы. Возможно, сигналом для такого изменения мембранной проницаемости является взаимодействие цАМФ с Р-субъе-диницей протеинкиназы II типа, ассоциированной с МАР-2. Сигнал распространяется по цитоскелету к мембране нейронов с очень высокой частотой; для поддержания такой частоты достаточное время требуется энергия АТФ (но не АТФ-зависимое фосфорилирование).

Синергизм в действии протеинкиназ В и А в нервной ткани проявляется также при потенцировании цАМФ-индуцируемых входящих токов внутриклеточными ионами Са. Повышение внутриклеточной концентрации цАМФ в нейронах виноградной улитки приводит к деполяризации мембраны, а в условиях фиксации потенциала — к возникновению ионного тока по каналам пассивной проницаемости. Увеличение внутриклеточной концентрации Са2+ приводит к значительному увеличению амплитуды и длительности цАМФ-тока.

Можно полагать, что синергическое действие Са2+ и иАМФ на соответствующие ионные каналы связано с наличием у последних двух различных участков фосфорилирования; для В- и А-киназ. Возникающие под влиянием КМ-зависимого фосфорилирования изменения в структуре канала обеспечивают повышение доступности соответствующего участка фосфорилирования для протеинкиназы А. Напротив, при изучении влияния внутриклеточного Са2+ на Са-зависимые калиевые каналы взаимодействие двух систем вторичных посредников отличается тем, что цАМФ выступает в роли агента, повышающего чувствительность канала к внутриклеточному Са^+ и КМ. Можно полагать, что регуляция числа каналов и их активности с помощью протеинфосфо-рилирования связана с изменениями в процессах поведения и обучения.

В последнее время появились данные о регуляции протеин-киназной и протеинфосфатазной активности с помощью Са-связывающего белка S-100 (см. также гл.2). S-100 активирует фосфопротеинфосфатазы мозга, а также модулирует активность ядерных и цитоплазматических протеинкиназ этой ткани, в частности К-субъединицы протеинкиназы A. S-100 ингибирует фосфорилирование ряда субстратов в клетках мозга; кальмодулин активирует фосфорилирование этих же белков. Возможно, S-I00 и кальмодулин действуют в мозге как антагонисты. Во всяком случае, в нервной ткани реализуется еще один путь Са-зависимого фосфорилирования-дефосфорилирования, независимый от КМ-стимулируемого процесса. S-100-стимулируемое фосфорилирование-дефосфорилирование может принимать участие в регуляции ряда функций нервных клеток.

Необходимо отметить участие В-киназы II типа наряду с про-

354

теинкиназой А в фосфорилировании и соответствующей активации т!фозингидроксилазы, что приводит к ускорению синтеза катехоламинов в ответ на нервный импульс и нейромедиатор-ный сигнал. Установлено, что триптофангидроксилаза — фермент, катализирующий первую реакцию биосинтеза серотонина, также фосфорилируется протеинкиназой В II типа. Фосфорилирование триптофангидроксилазы приводит к двукратному увеличению ее активности. Таким образом, Са-КМ-зависимое фосфорилирование ферментов, принимающих участие в синтезе нейромедиаторов и гормонов, является одним из ключевых аспектов участия В-киназ в нейрогуморальной регуляции.

¦ В заключение этого раздела отметим, что на основании результатов многочисленных исследований установлена тесная взаимосвязь между процессами, регулируемыми Са2+, цАМФ и 2-5А. Это дает основание для их рассмотрения в рамках единой регуляторной системы. Взаимодействие Са2+, цАМФ и 2-5А обусловлено двумя типами регуляторньгх связей. Во-первых, ряд жизненно важных для клеток реакций контролируется этими вторичными посредниками одновременно. Так, например, активность киназы фосфорилазы гликогена зависит от цАМФ и Са2+, скорость синтеза белка полирибосомами контролируется с помощью фосфорилирования А-киназой и уровнем 2-5А и т.д. Во-вторых, увеличение внутриклеточного уровня одного из посредников приводит к изменению содержания других. Так, возрастание уровня цАМФ обесловливает индукцию олиго(А)-синтетазы и ингибирование 2'-фосфодиэстеразы, что приводит к увеличению концентрации 2-5А. В свою очередь, Са2* и 2-5А активируют фосфодиэстеразу цАМФ (по-видимому, разные формы фермента) и тем самым вызывают падение уровня цАМФ. Кроме того, увеличение внутриклеточного уровня цАМФ приводит к выбросу Са2+ из митохондрий в цитоплазму и высвобождению кальмодулина из пркмембранных компартментов.

10.4. Са2+-ФОСФОЛИПИД-ЗАВИСИМОЕ ПРОТЕИНФОСФОРИЛИРОВАНИЕ

10.4.1.Образование диацилглицерина и инозитолфосфатов

Эта группа вторичных посредников образуется при активации фосфолипазы С, локализованной в наружной клеточной мембране. Для ее активации необходимо связывание ряда гор-

355

монов и нейромедиаторов, известных своей способностью увеличивать концентрацию Са2+ в цитозоде, с соответствующими рецепторами. К числу агонистов, стимулирующих фосфолипа-зу С, относят ацетилхолин, норадреналин, гистамин, серотонин, а также ряд гормонов белковой природы и ростовых факторов. Сопряжение фосфолипазы С с рецепторами достаточно специфично; например, из 4 известных основных типов адре-норецепторов (о^, а2, fi{ и (32) ои0 характерно только для ctj-типа, а из 2 типов холинорецепторов — только для мускарин-чувствительного, но не для никотинчувствительного. Так же, как и в случае аденилатциклазы, для сопряжения рецептии и активации фосфолипазы С необходимы G-белки, иногда называемые Gp. Установлено, что белок типа Gj также может непосредственно принимать участие в регуляции фосфолипазы С, а Gs — опосредовано, путем цАМФ-зависимого ингибирования фосфолипазы С.

Субстратом фосфолипазы

страница 71
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

Скачать книгу "Нейрохимия: Учебник для биологических и медицинских вузов" (21.4Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Химический каталог

Copyright © 2009
(01.07.2022)