Биологический каталог




Самая главная молекула

Автор М.Д.Франк-Каменецкий

ганизмы, даже вирусы, такую операцию переносят гораздо болезненнее.

Используя рестриктазы, получают гибридные плазмиды, содержащие фрагменты ДНК из любых организмов. Затем гибридные плазмиды размножают вместе с бактерией-хозяйкой, и так удается многократно умножить включенный чужеродный участок ДНК. Эта процедура получила название клонирования. Клонируют, прн помощи плазмид, любые участки ДНК. Этот прием дал молекулярным биологам уникальную возможность манипулировать генами, причем не только бактерий и вирусов, но и высших организмов. Это открыло путь к замечательным открытиям, о которых будет рассказано в следующих главах. Но главная цель генной инженерии — научиться получать в клетках одного вида конечные продукты генов другого вида, то есть белки.

Бактерия вырабатывает нужный нам белок

В плазмиду можно встроить участок ДНК, взятый откуда угодно, скажем, ген человека, и она внутри бактерии начинает вырабатывать белок, соответствующий человеческому гену. Это и есть тот трюк, который генные инженеры научились проделывать с проворством искусных магов. При этом используется один из трех приемов.

Первый прием был популярен на заре генной инженерии, в середине 70-х годов, когда в плазмиду встраивали, в основном, гены кишечной палочки или других бактерий. Он совсем прост. ДНК, один из генов которой хотят встроить, случайным образом дробят на куски. При этом даже не обязательно использовать рестриктазы. Затем такую случайно нарубленную ДНК примешивают к плазмиде, разрезанной рестриктазой в одном месте, и добавляют лигазу. Разные плазмидные молекулы захватывают разные куски ДНК, так что в результате получается масса различных плазмид. Весь этот «винегрет» добавляют к бактериальным клеткам.

Главная проблема в таком подходе — отобрать нужный штамм, несущий плазмиду с попавшим в нее искомым геном. Если существует критерий такого отбора, то этим методом можно получить хороший результат. И все же, хотя этим методом и был получен ряд ценных штаммов, вырабатывающих тот или иной бактериальный белок, за ним недаром закрепилось название «метод дробовика». Он действительно напоминает стрельбу из дробовика, причем с закрытыми глазами. В этом раннем методе генной инженерии еще слишком большая роль отводилась случаю — случайная фрагментация, случайное встраивание. Все попытки получить с его помощью штаммы, вырабатывающие белок высшего организма, окончились полным провалом.

Поэтому в последние годы стали использовать два целенаправленных метода, с помощью которых и были достигнуты результаты, наделавшие столько шума. Первый метод состоит в том, что из клетки выделяют мРНК, отвечающую данному белку, С этой РНК с помощью ревертазы снимают ДНКовую копию, то есть получают нужный ген. Далее химическими методами к нему пришивают необходимые регуляторные участки (инициирующие и терминирующие кодоны), и встраивают в строго определенное место плазмиды. При этом используются плазмиды, специально сконструированные для целей генной инженерии. В такой плазмиде есть все, что необходимо для ее существования в бактериальной клетке, а также подготовлен промоторный участок, начиная с которого РНК-полимераза клетки считает любой ген, который будет встроен сразу вслед за промотором. Сюда и встраивают нужный ген.

Другой метод состоит в прямом химическом синтезе гена, исходя из нуклеотидной последовательности ДНК, которая должна соответствовать выбранному белку. Из-за вырожденности кода может быть много разных последовательностей, и экспериментатор волен выбирать, какую из них предпочесть. К синтетическому гену пришивают ре-гуляторные участки и встраивают в плазмиду.

Плазмиду, несущую искусственный ген, добавляют к бактериальным клеткам. Чтобы отобрать только те бактерии, которые несут нужную плазмиду, поступают следующим образом. Наряду с нужным геном в плазмиду включают ген устойчивости к какому-либо антибиотику или даже целый тандем генов, обеспечивающий устойчивость сразу к нескольким антибиотикам. Клетки растят на среде, содержащей эти антибиотики. Этот прием не только обеспечивает отбор нужных бактерий, но и не позволяет им избавляться от искусственных плазмид. Существуют также методы, позволяющие заставить каждую клетку содержать не одну-две, а тысячи копий плазмиды. Использование этих приемов позволяет добиться фантастической производительности по отношению к белку, закодированному во встроенном гене. Есть случаи, когда этот белок по массе составляет чуть ли не половину всего белка клетки.

Разработка технологии, позволяющей заставлять бактериальную клетку вырабатывать в больших количествах любой белок, ознаменовала начало нового этапа научно-технической революции — эры биотехнологии.

Но прежде всего эта новая технология произвела переворот в самих молекулярно-биологических исследованиях. Дело в том, что каждый конкретный белок производится клеткой, как правило, в очень малом числе, нередко всего по одной-две молекуле на клетку. В результате выделение индивидуального белка, нужного для экспериментов, превращается в труднейшую и весьма дорогую процедуру. Чтобы получить миллиграммы белка, приходится перерабатывать десятки килограммов, если не тонны, биомассы. Но все равно очистить как следует белок, когда он присутствует в столь малой концентрации, не удается. Отсюда — чрезвычайная дороговизна многих белковых препаратов и их недостаточная чистота.

Генная инженерия радикально изменила ситуацию. Уже есть генноинженерные штаммы — суперпродуценты многих белков, о получении которых в чистом виде еще пять лет назад нечего было и думать. Резко расширился ассортимент и упали цены на ферментные и другие белковые препараты, выпускаемые фирмами, обслуживающими молекулярнобио-логические исследования. Невиданно ускорились научные исследования. Молекулярная биология получила новый мощный импульс.

ГЛАВА 6

ДНКОВЫЕ ТЕКСТЫ Еще раз о кризисе

К концу 60-х годов в молекулярной биологии сложилась парадоксальная ситуация. К тому времени были довольно хорошо разработаны методы определения последовательности аминокислот в белках (первый белок — инсулин, был расшифрован еще в самом начале 50-х годов). Банк белковых последовательностей быстро пополнялся все новыми текстами. Был полностью расшифрован генетический код — словарь для перевода ДНКовых текстов на белковый язык. Но вот парадокс: не было прочитано ни одного ДНКового текста!

Конечно, куски текста можно было попытаться прочесть, так сказать, обратным ходом, исходя из белковых послеДовательностей. Но, во-первых, такое восстановление неоднозначно из-за вырожденности кода, а, во-вторых, и это самое главное, так не узнаешь, что стоит в промежутках между генами. А как раз генетические знаки препинания казались самым интересным, ведь это должны были быть регуляторные участки, управляющие работой РНК-поли-мераз и других белков, взаимодействующих с ДНК.

Фактически решение всех насущных вопросов молекулярной биологии уперлось в необходимость уметь читать последовательности ДНК. Как уже знает читатель, главной палочкой-выручалочкой, выведшей молекулярную биологию из состояния застоя, были рестриктазы. Они не только позволяли тасовать гены, но и сделали реальным определение последовательности нуклеотидов в ДНК. Ведь главная трудность заключалась в том, что молекулы ДНК очень длинные. Рестриктазы позволили разрезать длинные молекулы на достаточно короткие куски. Но оставалось решить еще две проблемы: научиться разделять фрагменты и определять последовательность в каждом из них.

Гель-электрофорез

На помощь пришла простая физическая методика, называемая электрофорезом. Молекула ДНК несет на себе отрицательный заряд, причем величина заряда пропорциональна длине цепочки. Это следствие обычной электролитической диссоциации дезоксирибонуклеиновой кислоты, которая, как и любая кислота, распадается на анион и ион водорода. Только происходит это в каждом мономерном звене поликислоты. Диссоциирует водород фосфатной группы, которая расположена слева иа рис. 9. Второго водорода у фосфатной группы, входящей в состав ДНК, нет, так как он отщепляется от нуклеотида при образовании полимерной цепи. При этом соседний нуклеотид теряет группу ОН сахара (см. нижнюю часть химической формулы» приведенной на рис. 9), так что при присоединении нуклеотида к концу полимерной цепи ДНК выделяется молекула воды.

Конечно, каждому отрицательному заряду фосфатной группы ДНК соответствует положительный заряд катиона. Обычно это ион натрия, а вовсе не водорода, так как хотя ДНК и называют кислотой, на самом деле она всегда — соль. Так что буква «К» в знаменитом сокращении «ДНК» — это плод чистейшего недоразумения. Ведь никто не называет поваренную соль соляной кислотой! Но ничего не попишешь — название укоренилось навеки. Придется нам и далее называть соль ДНК просто ДНК.

Катионы в большинстве своем не сидят на ДНК. а плавают отдельно в растворе, образуя вокруг молекулы очень рыхлое облако- Поэтому, если раствор ДНК поместить в конденсатор, то анион ДНК поплывет к положительной обкладке. Чем длиннее молекула, тем больше заряд, больше сила, но больше и сопротивление среды. Сопротивление увеличивается с длиной быстрее, чем сила, и в результате скорость падает с ростом длины. Тут работает закон Стокса, согласно которому в вязкой среде тела, под действием силы, движутся с постоянной скоростью, пропорциональной приложенной силе.

Таким образом, поместив в электрическое поле смесь, состоящую из фрагментов ДНК разной длины и выключив через некоторое время поле, мы обнаружим, что наша смесь распалась на несколько скоплений фрагментов, причем в каждом таком скоплении все молекулы будут иметь строго одинаковую длину. Это произойдет потому, что фрагменты разной длины сместятся за данное время в поле на разные расстояния от исходной точки, а одинаковые — на одно и то же расстояние. Правда, если на самом деле все это проделать, то разделения молекул по их длине добиться не удастся — вместо отдельных скоплений получится размазня. В чем же дело?

Все портит броуновское движение. Фрагменты ДНК — очень маленькие частички, и на их поведени

страница 12
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Скачать книгу "Самая главная молекула" (2.26Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Химический каталог

Copyright © 2009
(17.03.2016)