Биологический каталог




Принципы эволюции

Автор П.Кейлоу

ных процессов. Джулиан Хаксли [7] изучал, каким образом второй из этих процессов взаимодействует с первым, направляя и регулируя изменения размеров органов и соотнося их друг с другом и с изменениями величины организма в целом. Такие взаимоотношения часто описываются простым математическим уравнением

Y = рХ« ,

где У— размеры данной части, X—размеры другой части или организма в целом, а и ($— константы (но ср. Смит [11]).

.-. lgy-lgp + olgX

Эпигенетические законы

Генетические законы

G- ~ ?G,

Ревертированные

эпигенетические

законы

р,Экологические законы

Рис. 4.1. Некое исходное распределение генов (Gi) дает определенные фенотипы (Р,) в соответствии с эпигенетическими законами. Распределение фенотипов изменяется в соответствии с экологическими законами (переходя в Р2). Эти фенотипы вносят в генофонд (Gj) гены, которые распределяются в соответствии с генетическими законами (Ga). В этой главе основное внимание уделено рассмотрению пути от генов (G) к фенотипам (Р).

lgK = b + algX,

где 6=lgp. Эти соотношения известны под названием алломет-рических зависимостей, где а — константа аллометрии: если а>1, то У увеличивается в размерах быстрее, чем X, если же а<1, то наоборот, если а=1, то X и У растут пропорционально одна другой, и этот особый случай называют изометрией. Соответствующие примеры приведены на рис. 4.2. Эти зависимости могут отражать лежащие в их основе морфогенетические ограничения, и (или) скейлинг-эффект, и (или) конкуренцию между отдельными частями организма за ограниченные ресурсы, поступающие с пищей [11].

Нидхем [9] указывал, что как в принципе, так и практически относительные скорости и сроки наступления трех выделенных им фундаментальных процессов можно изменять и что такие регулировки оказывают глубокое влияние на конечный результат развития. Можно, например, экспериментально ускорить диффе-ренцировку по отношению к росту и получить карликов (экспериментальная карликовость). У некоторых беспозвоночных можно подавить размножение и получить великанов (паразиты

90 Глава 4

нередко кастрируют своих хозяев, что приводит к тому же результату). Если возможно искусственно разделить рост и развитие, то можно предполагать, что такая гетерохрония играет важную роль в эволюции. Мелкие мутации могли бы оказывать некоторое влияние на скорости и сроки роста органов и тканей, но сильно воздействовать на конечный результат — иными словами, небольшие изменения в а и (или) Ь могут иметь очень важные последствия для организации и морфологии взрослого организма.

100 г

1 2 3 4 5 0,01 0,1 1 10 100 10OO

Вес организма, lg (X) Вес тела, кг

Рис. 4.2. Примеры аллометрии в теории (А) и на практике (Б). Построенные в логарифмическом масштабе графики зависимости размеров одного органа (Y) от другого нли от размеров организма в целой (X) часто имеют вид прямых. Если наклон этих прямых равен единице, то зависимость называют изометрической (для сравнения иа рис. Б она изображена пунктиром); в этом случае X и Y увеличиваются в размерах с одинаковыми скоростями. Зависимость между весом кишечника и общим весом тела у млекопитающих и птнц примерно нзометричиа. Если наклон больше единицы, то зависимость положительно алло-метричиа и размеры Y увеличиваются быстрее, чем размеры X (например, данные по крысам). Когда наклон меньше единицы, то зависимость отрицательно аллометричиа и Y увеличивается медленнее, чем X (например, данные по собакам). Такие графики можно строить для особей, принадлежащих к одному виду (например, данные по собакам и крысам), или для особей, принадлежащих к нескольким разным видам (например, данные по млекопитающим и птицам).

92 Глава 4

Эволюция и развитие 93

Олберч и др. [2] систематизировали возможные способы возникновения таких регулировок по отношению к некой временной компоненте, определяющей инициацию развития, возраст и начало созревания (т. е. 3-й процесс из триады Нидхема). На рис. 4.3 эта система представлена графически. В каждом квадрате заключена некая траектория развития, т. е. некий показатель формы в зависимости от размеров или возраста. (Если используются размеры, то эти графики можно рассматривать как эквиваленты зависимостей, которые исследовал Хаксли.) Сплошными линиями изображены траектории предков, а прерывистыми — потомков. Вертикальная линия «Старт» указывает начало развития, а линия «Стоп» — его прекращение. При всех изменениях в верхнем ряду развитие замедляется или урезывается по сравнению с развитием предков, так что зрелость наступает на более ранней стадии развития. Этот процесс называется педоморфозом. При всех изменениях в нижнем ряду развитие, напротив, ускоряется или удлиняется, и это носит название пераморфоза. В этих случаях потомки проходят через предковые стадии на более раннем этапе развития, т. е. имеет место рекапитуляция предковых форм.

Можно привести примеры каждого из этих процессов.

1. Ретардация!неотения. Классическими примерами служат некоторые амфибии (хвостатые), у которых взрослые особи сохраняют жабры и другие личиночные органы. Взрослая форма выглядит поэтому как личинка и обитает в воде.

2. Прогенез. Самцы некоторых ракообразных достигают половой зрелости в то время, когда их общие размеры невелики. Эти миниатюрные самцы «паразитируют» на самках, которые гораздо крупнее (иногда на несколько порядков)'.

3. Предварение смещения (predisplacement). У мутаитлых «ползающих» (screeper) кур кости ног дифференцируются позднее, чем у нормальных цыплят, но дальнейший их рост происходит с обычной скоростью. Время вылупления также не изменяется, а поэтому у вылупляющихся цыплят ноги короткие.

4. Акселерация. У некоторых сравнительно молодых видов аммонитов рост лопастных линий на раковинах ускорен по сравнению с предковыми видами. Однако в этом замешаны и другие процессы, так что в дальнейшем данный пример будет рассмотрен более подробно.

5. Гиперморфоэ. Гигантские по сравнению с другими видами размеры ныне вымершего оленя Megaloceros giganteus достигались, возможно, за счет продолжения роста и задержки размножения.

6. Задержка смещения (postdisplacement). Этот процесс вместе с предварением смещения, возможно, участвует в регуляции типов полосатости у зебры. Бард [3] считает, что у зародыша имеется единственный механизм, создающий вертикальные полосы. В зависимости от того, на какой стадии роста он вступает в действие, полосы на голове будут шире (процесс начинается раньше—предварение смещения) или уже (процесс начинается позднее — задержка смещения) и расположение полос может быть весьма разнообразным. Наблюдается несколько типов полосатости, которые можно объяснить инициацией процесса образования полос в течение третьей (Equus burchelli), четвертой (Е. zebra) или пятой (Е. grevyi) недель развития.

Не следует, однако, ожидать, что нам всегда удастся наблюдать «в чистом виде» описанные выше изменения; в сущности,

94 Глава 4

Эволюция и развитие 95

более вероятно возникновение морфологических изменений в результате сочетания различных морфогенетических явлений. Хорошим примером служит аллометрическая зависимость между длиной лопастной линии и общими размерами тела у аммонитов, о которой уже говорилось выше и которая представлена на рис. 4.4. Здесь наклон кривых для потомков круче, чем для предков (рис. 4.4,/), так что дифференцировка этих лопастных линий у более молодых видов ускорена по сравнению с предко-выми видами. Но, кроме того, в филогенезе этой группы наблюдается выраженное увеличение общих размеров, и у потомков продолжается аллометрический рост лопастных линий, выходящий далеко за пределы размеров взрослых особей у предковых видов (гиперморфоз). Наконец, траектории видов-потомков располагаются выше, чем траектории предковых видов, так что потомки с самого начала уже обладают известным преимуществом, возможно, в результате какого-то предварения смещения.

Итак, все приведенные выше примеры показывают, каким образом изменения процессов развития могут оказывать существенное воздействие на дефинитивную морфологию взрослого организма. В принципе это может быть достигнуто при помощи мелких изменений в скоростях нескольких ключевых процессов, т. е. путем мелких генетических изменений. В этом и заключается амплификация в процессе развития.

4.3. Канализация развития

Одно из важнейших заключений, вытекающих из эмбриологических исследований, состоит в том, что развитие — процесс упорядоченный, способный в значительной степени сопротивляться нарушающим воздействиям, оказываемым на него «извне» (например, экспериментальные воздействия) или «изнутри» (например, мутации). Это можно проиллюстрировать следующими примерами.

1. Специалисты по экспериментальной эмбриологии уже довольно давно поняли, что у некоторых организмов процессы

развития способны обеспечить образование хорошо сформированных адаптивных фенотипов даже при наличии значительных нарушающих воздействий извне — процесс, известный под названием гомеостаза развития. Так, например, еще в XIX в. Ганс

Дриш (Hans Driesch) разрезал зародышей морского ежа на

стадиях гаструлы и прегаструлы пополам (рис. 4.5) и получал

из таких половинок вполне пропорциональных взрослых особей,

хотя и несколько меньших размеров, чем обычные.

2. Мутации в большинстве случаев рецессивны. В 20-х годах

Гаструпа

Плутеус

нашего века Морган (Morgan) заметил, что в природе все особи, принадлежащие к данному виду Drosophila, удивительно похожи друг на друга, и объяснял это тем, что все они обладают одним и тем же генотипом дикого типа; в сущности, это и предсказывал Дарвин (см. разд. 3.5). Добржанский [4], однако, поРис. 4.5. Эксперименты Дриша на зародышах морского ежа. А. Нормальное развитие. Б. Гаст-рула, которую Дрнш разрезал пополам, ожидая, что из нее разовьется «урод». В. Вместо ожидаемого урода из этой гаструлы в результате ее реорганизации развился маленький, но полный плутеус, способный в дальнейшем образовать нормальную взрослую особь.

казал, что подобное объяснение неверно; одинаковые на вид родительские особи

страница 18
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Скачать книгу "Принципы эволюции" (1.08Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Rambler's Top100 Химический каталог

Copyright © 2009
(17.10.2019)