Биологический каталог




Принципы эволюции

Автор П.Кейлоу

случае прерывистого роста, то тогда

«о

и если, из соображений удобства, мы примем гл = ?а=1, то RalRA=er"~rA н поэтому In wa^ra—гА. Следовательно, эти два показателя приспособленности связаны друг с другом. Популя-ционные генетики обычно предпочитают пользоваться холдей-новской мерой приспособленности, тогда как эволюционные экологи часто используют меру, предложенную Фишером. В этом разделе мы в дальнейшем будем пользоваться параметрами w и s, а к коэффициенту г вернемся в разд. 3.4. (Более подробное рассмотрение коэффициента г и его ограничений в качестве меры приспособленности можно найти у Чарлзуорта [3].)

Уравнения для диплоидного случая гораздо сложнее, чем для гаплоидного, потому что степень распространения или сокращения данного аллеля в популяции зависит от того, с какими аллелями он становится связанным в гетерозиготах.Так, например, вредный рецессивный ген будет защищен от элиминации отбором, если он в гетерозиготном состоянии связан с благоприятными доминантными аллелями. И напротив, отбор, направленный против вредного доминантного аллеля, ведет к элиминации благоприятных рецессивных аллелей, если они связаны с ними в гетерозиготах.

Приспособленность генотипов можно вычислить в основном таким же способом, как и приспособленность составляющих их аллелей. Это довольно искусственный способ, потому что гомозиготы одного поколения могут вносить вклад в гетерозиготы другого и наоборот (т. е. поставляются последующим поколениям гены, а не генотипы). Тем не менее из этих частот генотипов можно вывести изменение частоты аллелей при условии, что мы располагаем дополнительной информацией: а) о начальных частотах аллелей и б) о степени доминирования. Мы делаем это, используя адаптивные ценности и коэффициенты отбора, а не мальтузианские параметры, однако аналогичным образом можно использовать и последние [9].

Простейший возможный случай относится к одному локусу с двумя аллелями, например А и а, с частотами соответственно р и q. Большая часть рассуждений в популяционной генетике основана на системе именно такого типа. Допустим, что в результате отбора равновесие Харди—Вайнберга в некоей воображаемой популяции сдвигается следующим образом:

Генотипы АА Аа аа

Частота До отбора 0,1603s) 0,48(2pg), 0,36(?s)

т. е. р = 0,4; q = 0,6

Частота после отбора 0,32 0,52 0,16

Изменение, происшедшее с каждым генотипом (т. е. эквивалент R в табл. 2.2), составит поэтому АА = 0,32/0,16=2; Ла= =0,52/0,48=1,08; аа=0,16/0,36=0,44; на основе этого можно получить значение приспособленности для каждого генотипа, разделив каждое из полученных чисел на 2 (т. е. на самое большое значение). Отсюда

АА Аа аа

W 1 0,54 0,22

S 0 0,46 0,78

(W и S набраны прописными, так как они обозначают генотипы, а не свойства генов; этого мы будем придерживаться по всей .книге). Возвращаясь к начальным данным, можно получить но46 Глава 2

Механизмы, наследственности 47

вые частоты генотипов, установившиеся после отбора, из произведения исходных частот и значений W, приведя каждое из них к долям единицы путем деления на сумму этих отдельных членов. Эту сумму иногда обозначают через W, и она равна средней по всем W.

т. е. 1 (0,16) = 0,16 0,54 (0,48) 0,26 °'20208°'36) 2 = 0,5

0,16

Новая частота = —-— = 0,32 0,5 0,26

' =0,52 0,5 °'08 -0,.62-ЬО 0,5

В табл. 2.3 эти результаты представлены в обобщенном виде. Из первоначальных частот генов и значений W мы можем теперь вычислить конечные частоты аллелей (т. е. tf и р'). Отсюда частота аллеля а после отбора будет равна

^ q*Waa + pqWAa _

4 W

_ q(qWaa + pWto)

Изменение частоты (Д?) за одно поколение равно поэтому cf—q. Приведенные выше уравнения обычно записывают не через W, а через S, но это лишь обычная замена переменных. Аналогичным образом р' — это просто 1 — q1.

минирования или при сверхдоминировании WA^WAa^Waa)', 2) от того, какому аллелю благоприятствует отбор (например', как уже говорилось, вредный рецессивный аллель может быть скрыт в гетерозиготе, что замедлит его элиминацию; или же благоприятный рецессивный аллель в гетерозиготном состоянии будет элиминироваться отбором, что задержит его распространение в популяции); 3) от интенсивности отбора. Использование этих величин приводит к тому, что представленные выше уравнения для изменения частот аллелей приобретают другой вид; вывод всех этих уравнений можно найти в большинстве учебников по популяционной генетике. Однако решения этих уравнений нельзя найти аналитически (т. е. исходя из алгебраических уравнений); их можно получить только подстановкой конкретных вещественных чисел вместо q и W (т. е. моделированием).

Результаты, полученные на одной такой модели, действительно построенной Холдейном, приведены в табл. 2.4. Они относятся к случаю, в котором доминантный аллель обладает преимуществом при относительно низком давлении отбора. Это показывает, что изменение частоты генов зависит от их исходной частоты. При очень низких частотах отбор действует медленнее, чем при промежуточных, а по мере приближения данного аллеля к закреплению (т. е. вытеснению другого аллеля) скорость изменения его частоты заметно снижается. Это происходит потому, что менее благоприятный аллель сохраняется в гетерозиго-тах и его трудно вытеснить полностью. Рецессивному аллелю, обладающему преимуществом, закрепиться при низких частотах еще труднее, поскольку, находясь в гетерозиготном состоянии, он элиминируется из популяции отбором, направленным против менее благоприятного доминантного аллеля, однако закрепление такого рецессивного аллеля происходит быстрее. Ряд моделей, в которых S^O.001 и в которых рассматривались разные соотношения между П^гомоэ. и №гетероз., показывает, что сдвиги в генных частотах благоприятных аллелей от 0,1% до более чем 50% особей данной популяции происходят за менее чем 104 поколений. К этому числу мы еще вернемся.

Таблица 2.4. Число поколений, необходимых для того, чтобы произошло данное изменение в частоте доминантного аллеля, если доминанты оставляют 1000 потомков на 999 потомков рецессивов, т. е. Waa = 0,999 или Saa = 0,01

р 0,001 до 1% 1 до 50% 50 до 99% 99 до 99,999%

Число поколений 6920 4819 11 664 309 780

Скорость и характер изменения генных частот от поколения к поколению зависят: 1) от степени доминантности или рецессивности данного аллеля (которая изменяет соотношение значений W, т. е. при доминировании WAA = WAa^Waa, а в отсутствие доЕсли под действием отбора частота благоприятного аллеля возрастает, то отбор должен также повышать среднюю приспо48 Глава 2

Механизмы наследственности 49

собленность популяции в целом (т. е. W). Кроме того, поскольку изменение частоты происходит медленнее всего, когда частота одного аллеля очень низка или высока, изменение это, вероятно, будет наибольшим при промежуточных частотах, т. е. когда значения частот аллелей наиболее близки друг к другу. Это' интуитивная формулировка принципа, который был строго доказан Фишером и считался основной чертой эволюции путем естественного отбора. Его часто называют основной теоремой естественного отбора Фишера, которая формулируется следующим образом: «скорость повышения приспособленности любого организма в любое время равна его генетической дисперсии по приспособленности в это время». Формулировка Фишера неудачна, так как под «организмом» он несомненно имел в виду популяцию. Генетическая дисперсия по W тем больше, чем ближе частоты аллелей и, следовательно, разброс значений W.

Фишер называл свою теорему основной, потому что она строго определяла зависимость между двумя краеугольными камнями дарвиновской теории — изменчивостью внутри популяций и скоростями эволюционного изменения. Однако эта зависимость оказалась не столь несомненной, как полагал Фишер. Так, например, если приспособленность сама зависит от генетической дисперсии (что представляется правдоподобным в некоторых ситуациях; см. разд. 3.5), то скорость изменения приспособленности не должна быть связана с этой дисперсией простой зависимостью. Кроме того, Фишер вывел свою зависимость для случая одного локуса с двумя аллелями; если же рассматривать примеры с участием более чем одного локуса, то зависимость между этими двумя переменными может оказаться значительно сложнее (см. разд. 2.3.3). Есть также и другие потенциальные неясности и проблемы [И]. Таким образом, вытекающее из основной теоремы Фишера следствие, что действие естественного отбора всегда направлено на максимизацию приспособленности, нельзя принимать безоговорочно, и из этого в свою очередь вытекает ряд следствий, которые необходимо учитывать при изучении адаптации (см. гл. 3). С основной теоремой Фишера связана еще одна концепция — концепция генетического груза (различие между максимальной потенциальной приспособленностью популяции и- W). Это различие создается любым процессом, порождающим генетическую изменчивость, в том числе мутационным процессом (мутационный груз) и процессом генетической перестройки, обусловленной расщеплением (сегрегационный груз). Как и основная теорема Фишера, а возможно, именно из-за нее, концепция генетического груза небесспорна и вызывает разногласия, а поэтому в дальнейшем мы о ней говорить не будем.

Вернемся теперь к вопросам, поставленным в начале этого раздела: насколько отбор важнее, чем повторные мутации? Обратите внимание на то, что для повышения частоты данного аллеля в результате мутирования при отсутствии отбора необходимо, чтобы данная мутация время от времени возникала вновь, т. е. повторялась. Рассмотрим мутирование в одном направлении от Л к а, происходящее с частотой и. Вообще обычно происходит также обратное мутирование от а к Л, уравновешивающее эффект первого процесса. Однако мы пренебрежем обратными мутациями и используем наиболее благоприятную систему для изменения частоты аллеля путем мутаций. Согласно оценке Холдейна, сделанной на основе наблюдений по дрозофиле и примуле, частота мутаций равна примерн

страница 9
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Скачать книгу "Принципы эволюции" (1.08Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Rambler's Top100 Химический каталог

Copyright © 2009
(17.10.2019)