Биологический каталог




Микробиология

Автор А.А.Воробьев, А.С.Быков, Е.П.Пашков, А.М.Рыбакова

о г 5"~ к У-кшгцу. другая - достраивается кшжгмептло.

Ршлккацш ДНК происходит а три этапа: инициация, элонгации, иди рост ценя, к тершшацши OGpaiuMu^neия i результате репликации дне хромосомы расходится, чеку АЮССЯКТНУЕГ увеличение размерен растущей клетки: ирикрешенны* к цито-пггатаятмчмьтш мембране или ет ЛРОН'шодным (например, мс-jocomuk) хромосомы по мере- увеличении оСгьша клетки удал и-ются дру| о1 друга. Окончательное их о&гашенне йнеришетен образа одни ем 1мрег2й«кн ид и мерйгародкн делении. Юетки с NEPEIоридкой делении распилимся в результате дейстййй аутади-ти четких ФЕРМЕЛЮИ, |JJJP'. Ш:ЛИ;ИИ.Л -.Ч P.JLCB^I.V ITUPEI ОРУДКИ ,.•„: денин. Ау-1ч^лиI ПРИ >ТОЧ мижст проходить НЕРАВНОМЕРНО' ЯЕЛЯ щис-ся КЛЕТКИ ь однач уч?.ЕП<Е остаются сашиными частью юе

Время

Рис.3.2. Фазы размножения бактерий.

точной стенки в области перегородки деления. Такие клетки располагаются под углом друг к другу, что характерно для дифтерийных коринебактерий.

Размножение бактерий в жидкой питательной среде. Бактерии, засеянные в определенный, не изменяющийся объем питательной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и прекращению роста бактерий. Культивирование бактерий в такой системе называют периодическим культивированием, а культуру — периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивирование называется непрерывным, а культура — непрерывной.

При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов:

А лаг-фаза;

А фаза логарифмического роста;

А фаза стационарного роста, или максимальной концентрации

бактерий; А фаза гибели бактерий.

Эти фазы можно изобразить графически в виде отрезков кривой размножения бактерий, отражающей зависимость логарифма числа живых клеток от времени их культивирования (рис. 3.2). Л а г-фаза (от англ. lag — запаздывание) — период между посевом бактерий и началом размножения. Продолжительность лаг-фазы в среднем 4—5 ч. Бактерии при этом увеличиваются в размерах и готовятся к делению; нарастает количество нуклеиновых кислот, белка и других компонентов. Фаза логарифми

чес ко го (экспоненциального) роста является периодом интенсивного деления бактерий. Продолжительность ее около 5—? 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20—40 мин. Во время этой фазы бактерии наиболее ранимы, что объясняется высокой чувствительностью компонентов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др. Затем наступает фаза стационарного роста, при которой количество жизнеспособных клеток остается без изменений, составляя максимальный уровень (М-концентрация). Ее продолжительность выражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования. Завершает процесс роста бактерий фаза гибели, характеризующаяся отмиранием бактерий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжительность ее колеблется от 10 ч до нескольких недель. Интенсивность роста и размножения бактерий зависит от многих факторов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.

Размножение бактерий на плотной питательной среде. Бактерии, растущие на плотных питательных средах, образуют изолированные колонии округлой формы с ровными или неровными краями (S- и R-формы; см. главу 5), различной консистенции и цвета, зависящего от пигмента бактерий.

Пигменты, растворимые в воде, диффундируют в питательную среду и окрашивают ее, например синегнойная палочка (Pseudomonas aeruginosa) окрашивает среду в синий цвет. Другая группа пигментов нерастворима в воде, но растворима в органических растворителях. Так, колонии «чудесной палочки» имеют кроваво-красный пигмент, растворимый в спирте. И, наконец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.

Наиболее распространены среди микроорганизмов такие пигменты, как каротины, ксантофиллы и меланины. Меланины являются нерастворимыми пигментами черного, коричневого или красного цвета, синтезирующимися из фенольных соединений. Меланины наряду с каталазой, супероксиддисмутазой и перок-сидазами защищают микроорганизмы от воздействия токсичных перекисных радикалов кислорода. Многие пигменты обладают антимикробным, антибиотикоподобным действием.

Вид, форма, цвет и другие особенности колоний на плотной питательной среде могут учитываться при идентификации бактерий, а также отборе колоний для получения чистых культур.

В промышленных условиях при получении биомассы микроорганизмов с целью приготовления антибиотиков, вакцин, диагностических препаратов, эубиотиков культивирование бактерий и грибов осуществляют в ферментерах при строгом соблюдении оптимальных параметров для роста и размножения культур (см. главу 6).

3.5. Взаимодействие вируса с клеткой

Известны три типа взаимодействия вируса с клеткой:

? продуктивный тип, завершающийся образованием вирусного потомства;

? абортивный тип, не завершающийся образованием новых вирусных частиц, поскольку инфекционный процесс прерывается на одном из этапов;

? интегративный тип, или вирогения, характеризующийся встраиванием вирусной ДНК в хромосому клетки-хозяина.

3.5.1. Продуктивный тип взаимодействия (репродукция вирусов)

Репродукция вирусов (от англ. reproduce — воспроизводить) осуществляется в несколько стадий, последовательно сменяющих друг друга:

А адсорбция вируса на клетке; А проникновение вируса в клетку; А «раздевание» вируса;

А биосинтез вирусных компонентов в клетке;

А формирование вирусов;

А выход вирусов из клетки (рис. 3.3).

Адсорбция. Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны — так называемых рецепторах. Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от Ш4 до 105. Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.

Поверхностные структуры вируса, «узнающие» специфические клеточные рецепторы и взаимодействующие с ними, называются прикрепительными белками. Обычно эту функцию выполняет один из поверхностных белков капсида или суперкапсида. Соответствие (комплементарность) клеточных рецепторов вирусным

Рис.3.3. Стадии репродукции вирусов (схема).

I — адсорбция вируса на клетке; 2 — проникновение вируса в клетку путем виропексиса; 3 — вирус внутри вакуоли клетки; 4 — «раздевание» вируса; 5 — репликация вирусной нуклеиновой кислоты в ядре (а) или цитоплазме (б) клетки; 6 — синтез вирусных белков на рибосомах клетки; 7 — формирование вируса; 8 — выход вируса из клетки путем почкования.

прикрепительным белкам имеет значение для возникновения инфекционного процесса в клетке. Способность вирусов избирательно поражать определенные клетки органов и тканей организма называют тропизмом вирусов (от греч. tropos — направление).

Проникновение в клетку. Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

«Раздевание». Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько эта

пов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.

Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.

Реализация генетической информации вируса осуществляется в соответствии с хорошо известными из биологии процессами транскрипции (от лат.transcriptio — переписывание, т.е. синтез информационных РНК — иРНК, комплементарных матричным ДНК или РНК), трансляции (от лат. translatio — передача, т. е. синтез белков на рибосомах клетки с участием иРНК) и репликации (от лат. replicatio — повторение, т. е. синтез молекул нуклеиновой кислоты, гомологичных геному). Поскольку генетический аппарат вирусов достаточно разнообразен, то передача наследственной информации в отношении синтеза иРНК различна. Основные схемы реализации вирусной генетической информации могут быть представлены следующим образом:

• для ДНК-содержащих вирусов: ДНК вируса -> иРНК белок вируса;

• для РНК-содержащих минус-нитевых вирусов: РНК вируса -> иРНК -> белок вируса;

• для РНК-содержащих плюс-нитевых вирусов: РНК вируса -> белок вируса;

• для

страница 10
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

Скачать книгу "Микробиология" (5.88Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Химический каталог

Copyright © 2009
(30.06.2022)