Биологический каталог




Микробиология

Автор А.А.Воробьев, А.С.Быков, Е.П.Пашков, А.М.Рыбакова

РНК-содержащих ретровирусов: РНК вируса комплементарная ДНК -» иРНК -> белок вируса.

Для синтеза иРНК одни вирусы используют клеточные ферменты, другие — собственный набор ферментов (полимераз).

Вирусная нуклеиновая кислота кодирует синтез двух классов белков: неструктурных белков-ферментов, которые обслуживают процесс репродукции вирусов на разных его этапах, и структурных белков, которые войдут в состав вирусных частиц потомства.

Синтез компонентов вируса (белков и нуклеиновых кислот) разобщен во времени и пространстве, т. е. протекает в разных структурах ядра и цитоплазмы клетки. Вот почему этот уникальный способ размножения вирусов называется дисъюнктивным (от лат. disjunctus — разобщенный).

Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, со-левых и водородных связей.

Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

? формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

? сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

? формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

? сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки. Различают два основных типа выхода вирусного потомства из клетки. Первый тип — взрывной — характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип — почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5—6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

3.5.2. Интегративный тип взаимодействия (вирогения)

Интегративный тип взаимодействия (вирогения) характеризуется встраиванием (интеграцией) нуклеиновой кислоты вируса в хромосому клетки. При этом вирусный геном реплицируется и функционирует как составная часть клеточного генома.

Интеграция вирусного генетического материала с ДНК клетки характерна для определенных групп вирусов: бактериофагов, опухолеродных (онкогенных) вирусов, некоторых инфекционных вирусов (вирус гепатита В, аденовирус, ВИЧ). Для интеграции с хромосомой клетки необходима кольцевая форма двунитчатой вирусной ДНК. У ДНК-содержащих вирусов (вирус гепатита В) их ДНК обладает свойством встраиваться в геном клетки при участии ряда ферментов. У некоторых РНК-содержащих вирусов (ВИЧ, онкогенные вирусы) процесс интеграции более сложный и является обязательным в цикле их репродукции. У этих вирусов сначала на матрице РНК с помощью вирусспецифического чЬермента обратной транскриптазы (ревертазы) синтезируется ДНК-копия (кДНК), которая затем встраивается в ДНК клетки. ДНК вируса, находящаяся в составе хромосомы клетки, называется ДНК-провирусом. При делении клетки, сохраняющей свои нормальные функции, ДНК-провирус переходит в геном дочерних клеток, т.е. состояние вирогении наследуется.

ДНК-провирус несет дополнительную генетическую информацию, в результате чего клетки приобретают ряд новых свойств. Так, интеграция может явиться причиной возникновения ряда аутоиммунных и хронических заболеваний, разнообразных опухолей. Под воздействием ряда физических и химических факторов ДНК-провирус может исключаться из клеточной хромосомы и переходить в автономное состояние, что ведет к репродукции вируса.

3.6. Культивирование и индикация вирусов

Культивирование вирусов человека и животных проводят с целью лабораторной диагностики вирусных инфекций, для изучения вопросов патогенеза и иммунитета, получения диагностических и вакцинных препаратов, применяют в научно-исследовательской работе. Поскольку вирусы являются абсолютными паразитами, их культивируют или на уровне организма, или на уровне живых клеток, выращиваемых вне организма в искусственных условиях. В качестве биологических моделей для культивирования используют лабораторных животных, развивающиеся куриные эмбрионы и культуры клеток.

Лабораторные животные (белые мыши, хлопковые крысы, кролики, хомяки, обезьяны и др.) в начальный период развития вирусологии были единственной экспериментальной биологической моделью, которую использовали для размножения и изучения свойств вирусов. На основании развития типичных признаков заболевания и патоморфологических изменений органов животных можно судить о репродукции вирусов, т. е. проводить индикацию вирусов. В настоящее время применение этой модели для диагностики ограничено из-за невосприимчивости животных ко многим вирусам человека.

Куриные эмбрионы предложены в качестве экспериментальной модели для культивирования вирусов в середине 30-х годов Ф. Бернетом. К достоинствам модели относятся возможность накопления вирусов в больших количествах, стерильность объекта, отсутствие скрытых вирусных инфекций, простота техники работы. Для культивирования вирусов исследуемый материал вводят в различные полости и ткани куриного зародыша.

Индикацию вирусов осуществляют по характеру специфических поражений оболочек и тела эмбриона, а также феномену гемагглютинации — склеиванию эритроцитов. Явление гемагглю-тинации впервые было обнаружено в 1941 г. при культивировании в куриных эмбрионах вирусов гриппа. Позднее было установлено, что гемагглютинирующими свойствами обладают многие вирусы. На основе этого феномена была разработана техника реакции гемагглютинации (РГА) вне организма (in vitro), которая широко применяется для лабораторной диагностики вирусных инфекций. Куриные эмбрионы не являются универсальной биологической моделью для вирусов. Почти неограниченные возможности появились у вирусологов после открытия метода выращивания культур клеток.

Метод культур клеток — выращивание различных клеток и тканей вне организма на искусственных питательных средах — разработан в 50-х годах Дж. Эндерсом и сотр. Подавляющее большинство вирусов способно размножаться на культурах клеток. Для приготовления культур клеток используют самые разнообразные ткани человека, животных и птиц. Большое распространение получили культуры клеток из эмбриональных и опухолевых (злокачественно перерожденных) тканей, обладающих по сравнению с нормальной тканью взрослого организма более активной способностью к росту и размножению.

В зависимости от техники приготовления и культивирования различают три основных типа культур клеток и тканей: однослойные культуры клеток; культуры суспензированных клеток; органные культуры.

Наибольшее практическое применение получили однослойные культуры, растущие на поверхности стекла лабораторной посуРИС.. ^ 1 f> v • :<.: >Ш4НШ1 К;--.5-.|у|1(> ч к:ТСЖ.

ды й виде чсоноскеш к.чктой. (рме3.4, а). Одгюслоймые кулыурьс меток, в зависимости от чис.'ш жшитюотбныэ! rtnepflmoi i> клюю очеред* подразделяются на первичные, '*ля гтфви ч но - ту..: 11 си н и -мцжнсиыые (иПйсобнI:: :*чпожаться ап-кратна), ггсрсынэтмыс.

или стабильные (способны перевиваться в лабораторных условиях в течение неопределенно длительного срока), и полуперевиваемые (способны размножаться в течение 40—50 пассажей). Культуры суспензированных клеток растут и размножаются во взвешенном состоянии при постоянном интенсивном перемешивании среды. Они могут быть использованы для накопления большого количества вирусов. Некоторые вирусы лучше размножаются в органных культурах, которые представляют собой кусочки органов животного или человека, выращиваемых вне организма и сохраняющих свойственную данному органу структуру. В зависимости от свойств вируса подбирают наиболее чувствительную к данному вирусу культуру клеток, на которой возможна его репродукция.

О размножении вирусов в культуре клеток свидетельствуют следующие признаки:

А цитопатический эффект;

А образование в клетках включений;

А образование бляшек;

А феномен гемадсорбции;

А «цветная» реакция.

б

Рис.3.6. Бляшки вирусов в культуре клеток.

Цитопатический эффект (ЦПЭ) — видимые под микроскопом морфологические изменения клеток вплоть до их гибели, возникающие в результате повреждающего действия вирусов (рис. 3.4, б). Характер ЦПЭ, вызванного разными вирусами, неодинаков. Включения представляют собой скопления вирусных частиц, вирусных белков или клеточного материала, которые можно обнаружить в ядре или цитоплазме клеток при специальных методах окраски (рис. 3.5). Бляшки, или «негативные колонии» вирусов, — участки разрушенных вирусами клеток; их можно обнаружить при культивировании вирусов на однослойных клеточных культурах, покрытых тонким слоем агара (рис. 3.6). Бляшки, образуемые разными вирусами, отличаются по величине, форме, времени появления, поэтому феномен бляшко-образования используют для дифференциации вирусов. Реакция гемадсорбции — способность клеточных культур, зараженных вирусом, адсорбировать на своей поверхности эритроциты. Механизмы реакций гемадсорбц

страница 11
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

Скачать книгу "Микробиология" (5.88Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Rambler's Top100 Химический каталог

Copyright © 2009
(17.10.2019)