Биологический каталог




Микробиология

Автор А.А.Воробьев, А.С.Быков, Е.П.Пашков, А.М.Рыбакова

ии появляются штаммы вируса со свойствами родительских микроорганизмов.

В качестве примера негенетического взаимодействия вирусов может быть приведена комплементация: при смешанной инфекции стимулируется репродукция обоих участников взаимодействия или одного из них без изменения генотипов вирусов. Комплементация широко распространена среди вирусов и наблюдается между как родственными, так и неродственными вирусами. Обмен генетическим материалом при этом феномене не наблюдается.

Если геном одного вируса заключен в капсид другого вируса, этот феномен называется фенотипическим смешиванием, наблюдаемым при смешанной инфекции.

Возможны также генетические взаимодействия неродственных вирусов, изучаемые генетической инженерией (см. главу 6).

Изучение генетики микроорганизмов не только имеет важное биологическое значение, но и способствует решению многих медицинских проблем, таких, как разработка патогенетических основ лечения и профилактики инфекционных болезней, способов диагностики (полимеразная цепная реакция, ДНК-зонды), создание профилактических, лечебных и диагностических препаратов.

Полимеразная цепная реакция (ПЦР) основана на амплификации, т.е. увеличении количества копий специфического («маркерного») гена возбудителя. Для этого двунитчатую ДНК, выделенную из исследуемого материала, денатурируют («расплетают») и достраивают к «расплетенным» нитям ДНК новые комплементарные нити, в результате чего из одного гена образуются два. Этот процесс копирования генов многократно повторяется при различных температурных режимах. Достраивание новых комплементарных нитей ДНК происходит в пробирке (in vitro) при добавлении к амплифицируемым генам прай-меров (затравки из коротких однонитевых ДНК), ДНК-полиме-разы и нуклеотидов.

Глава 6

ОСНОВЫ МЕДИЦИНСКОЙ БИОТЕХНОЛОГИИ

6.1. Понятие о биотехнологии, цели и задачи

Биотехнология представляет собой область знаний, которая возникла и оформилась на стыке микробиологии, молекулярной биологии, генетической инженерии, химической технологии и ряда других наук. Рождение биотехнологии обусловлено потребностями общества в новых, более дешевых продуктах для народного хозяйства, в том числе медицины и ветеринарии, а также в принципиально новых технологиях. Биотехнология (от греч. bios — жизнь, teken — искусство, мастерство, logos — наука, умение, мастерство) — это получение продуктов из биологических объектов или с применением биологических объектов. В качестве биологических объектов могут быть использованы организмы животных и человека (например, получение иммуноглобулинов из сывороток вакцинированных лошадей или людей; получение препаратов крови доноров), отдельные органы (получение гормона инсулина из поджелудочных желез крупного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов). Однако в качестве биологических объектов чаще всего используют одноклеточные микроорганизмы, а также животные и растительные клетки. Выбор этих объектов обусловлен следующими причинами:

? клетки являются своего рода «биофабриками», вырабатывающими в процессе жизнедеятельности разнообразные ценные продукты (белки, жиры, углеводы, витамины, аминокислоты, антибиотики, гормоны, антитела, антигены, ферменты, спирты и пр.). Эти продукты, крайне необходимые в жизни человека, пока недоступны для получения «небиотехнологи-ческими» способами из-за сложности технологии процессов или экономической нецелесообразности, особенно в условиях крупномасштабного производства;

? клетки чрезвычайно быстро воспроизводятся, что позволяет за относительно короткое время искусственно нарастить на сравнительно дешевых и недефицитных питательных средах в промышленных масштабах огромные количества биомассы микробных, животных или растительных клеток;

? биосинтез сложных веществ (белков, антибиотиков, антигенов, антител и др.) значительно экономичнее и технологически доступнее, чем химический синтез. Коэффициент полезного действия «работы» клетки равен 70 %, а самого совершенного технологического процесса — значительно ниже;

? возможность проведения биотехнологического процесса в промышленных масштабах, т.е. наличие соответствующего технологического оборудования и аппаратуры, доступность сырья, технологии переработки и др.

Клетки животных и растений, микробные клетки в процессе жизнедеятельности (ассимиляции и диссимиляции) образуют новые продукты и выделяют метаболиты, обладающие разнообразными физико-химическими свойствами и биологическим действием. Обычно продукты жизнедеятельности одноклеточных делят на 4 категории:

А сами клетки как источник целевого продукта. Например, выращенные бактерии или вирусы используют для получения живой или убитой корпускулярной вакцины; дрожжи — как кормовой белок или основу для получения гидролизатов питательных сред и т.д.;

А крупные молекулы (макромолекулы), которые синтезируются клетками в процессе выращивания: ферменты, токсины, антигены, антитела, пептидогликаны и др.;

А первичные метаболиты — низкомолекулярные вещества, необходимые для роста клеток (аминокислоты, витамины, нук-леотиды, органические кислоты);

А вторичные метаболиты (идиолиты) — низкомолекулярные соединения, не требующиеся для роста клеток (антибиотики, алкалоиды, токсины, гормоны).

Биотехнология использует эту продукцию клеток как сырье, которое в результате технологической обработки превращается в конечный продукт. С помощью биотехнологии получают множество продуктов, используемых в различных отраслях:

• медицине (антибиотики, витамины, ферменты, аминокислоты, гормоны, вакцины, антитела, компоненты крови, диагностические препараты, иммуномодуляторы, алкалоиды, пищевые белки, нуклеиновые кислоты, нуклеозиды, нуклеоти-ды, липиды, антиметаболиты, антиоксиданты, противоглистные и противоопухолевые препараты);

• ветеринарии и сельском хозяйстве (кормовой белок: кормовые антибиотики, витамины, гормоны, вакцины, биологические средства защиты растений, инсектициды);

• пищевой промышленности (аминокислоты, органические кислоты, пищевые белки, ферменты, липиды, сахара, спирты, дрожжи);

• химической промышленности (ацетон, этилен, бутанол);

• энергетике (биогаз, этанол).

Следовательно, биотехнология направлена на создание диагностических, профилактических и лечебных медицинских и ветеринарных препаратов, на решение продовольственных вопросов (повышение урожайности, продуктивности животноводства, улучшение качества пищевых продуктов — молочных, кондитерских, хлебобулочных, мясных, рыбных); на обеспечение многих технологических процессов в легкой, химической и других отраслях промышленности. Необходимо отметить также все возрастающую роль биотехнологии в экологии, так как очистка сточных вод, переработка отходов и побочных продуктов, их деградация (фенол, нефтепродукты и другие вредные для окружающей среды вещества) осуществляются с помощью микроорганизмов.

В настоящее время в биотехнологии выделяют медико-фармацевтическое, продовольственное, сельскохозяйственное и экологическое направления. В соответствии с этим биотехнологию можно разделить на медицинскую, сельскохозяйственную, промышленную и экологическую. Медицинская в свою очередь подразделяется на фармацевтическую и иммунобиологическую, сельскохозяйственная — на ветеринарную и биотехнологию растений, а промышленная — на соответствующие отраслевые направления (пищевая, легкая промышленность, энергетика и т. д.).

Биотехнологию также подразделяют на традиционную (старую) и новую. Последнюю связывают с генетической инженерией. Общепризнанное определение предмета «биотехнология» отсутствует и даже ведется дискуссия о том, наука это или производство.

Видимо, правильно будет определить биотехнологию как сферу деятельности, которая на основе изучения процессов жизнедеятельности живых организмов, главным образом клеток микроорганизмов, животных и растительных клеток, использует эти процессы и сами объекты для промышленного производства продуктов, необходимых в жизни человека, а также получения биоэффектов, ранее не встречавшихся в природе (например, получение рекомбинантных бактерий, трансгенных растений и животных).

В биотехнологии, как в никакой другой области знаний, тесно увязываются, интегрируются наука и производство.

Промышленное производство в биотехнологии по сути основано на нескольких принципах: брожении (ферментация), биоконверсии (превращение одного вещества в другое), культивировании растительных и животных клеток, бактерий и вирусов, генетических манипуляциях. Реализация этих научных принципов в производстве потребовала разработки промышленного оборудования и аппаратуры, отработки и оптимизации технологических процессов, разработки способов оценки и контроля продукции на всех ее стадиях.

Современная биотехнологическая промышленность располагает крупными заводами, опытно-конструкторскими учреждениями, научно-исследовательскими институтами. Фундаментальными проблемами биотехнологии заняты научно-исследовательские институты РАН, РАМН и ряд прикладных отраслевых институтов.

На заводах микробиологической (биотехнологической) промышленности ежегодно производятся миллионы тонн кормового белка, десятки тысяч тонн ферментов, антибиотиков, сотни диагностических и профилактических вакцинных и иммунных препаратов, набор практически всех аминокислот, витаминов, гормонов, спиртов, органических кислот и много другой продукции. Однако потребности быстро растущего народного хозяйства биотехнология удовлетворяет еще далеко не в полной мере. Поэтому развитию биотехнологии в настоящее время уделяется постоянное внимание, и эта отрасль быстро развивается.

6.2. Краткая история развития биотехнологии

Биотехнология возникла в древности (примерно 6000—5000 лет до н.э.), когда люди научились выпекать хлеб, варить пиво, приготовлять сыр и вино. Этот первый этап развития биотехнологии был сугубо эмпирический и продолжал оставаться таким, несмотря на совершенствование технологических процессов и расширение сфер использования биотехнологических приемов, вплоть до открытия Л.Пастером в XIX в. природы процесса брожения

страница 19
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

Скачать книгу "Микробиология" (5.88Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

п»ї
Rambler's Top100 Химический каталог

Copyright © 2009
(16.09.2019)