Биологический каталог

Принципы структурной организации нуклеиновых кислот

Автор В.Зенгер

ture of l-(2-indol-3-ylethyl)-3-carbamidepyridinium chloride, an intramolecular model of the nicotinamide adenine dinucleotide-tryptophan charge-transfer complex, J. Amer. Chem. Soc, 96, 1585-1589 (1974).

1224. Ishida Т., Inoue M. An X-ray evidence for the charge-transfer interaction between adenine and indole rings: Crystal structure of l,9-dimethyladenine-indole-3-acetic acid trihydrate complex, Biochem. Biophys. Res. Commun, 99, 149-154 (1981).

1225. Ash R. P., Herriot J. R, Deranleau D. D. Crystal structure of the ion pair l-methyl-3-carbamidopyridinium N-acetyl-L-tryptophanate, a model for 1-substituted nicotinamide-protein charge-transfer complexes, J. Amer. Chem. Soc, 99, 4471^1475 (1977).

1226. Inoue Af, Shibata M, Ishida T. X-Ray crystal structure of 7,8-dimethyliso-alloxazine-10-acetic acid: tyramine (1:1) tetrahydrate complex. A model for flavin coenzyme-tyrosine residue charge transfer complexes in flavoproteins, Biochem. Biophys. Res. Commun, 93, 415-419 (1980).

1227. Ishida Т., Inoue M, Fujiwara Т., Tomita K-I. X-Ray crystal structure of the 7,8-dimethylisoalloxazine-10-acetic acid-tryptamine complex. A model for flavin-indole charge-transfer complexes, J. Chem. Soc. Chem. Commun, 358-360, 1979.

1228. Ishida Т., Tomita K.-I., Inoue M. An X-ray study on the interaction between indole ring and pyridine coenzymes: Crystal structure of l-methyl-3-carbamoyl-pyridinium: indole-3-acetic acid (1:1) monohydrate charge-transfer complex, Arch. Biochem. Biophys, 200, 492-502 (1980).

1229. Slifkin M. A. Charge transfer interactions of purines and pyrimidines. In: Physico-Chemical Properties of Nucleic Acids (J. Duchesne, ed.), pp. 67-98, Academic Press, New York, 1973.

1230. Berman H.M., Hamilton W.C., Rousseau R.J. Crystal structure of an antiviral agent, 5-[N-(L-phenylalaynyl) amino] uridine, Biochemistry, 12, 1809-1814 (1973).

1230a.Takimoto M, Takenaka A., Sasada Y. Elementary patterns in protein-nucleic acid interaction. II. Crystal structure of 3-(adenin-9-yl)propionamide, Bull. Chem. Soc. Japan, 54, 16 1635-1639 (1981).



1231. Ohki М., Takenaka A., Shimanouchi Н., Sasada Y. 3-(9-Adenyl) propionyltyramine dihydrate, Acta Crystallogr, B, 33, 2956-2958 (1977).

1232. Narayanan P., Berman H. M. Model compounds for protein nucleic acid interactions. IV. Crystal structure of a nucleoside peptide with anti-viral poperties: 5-[N-(L-leucil)amino] uridine. Acta Crystallogr, B, 33, 2047-2051 (1977).

1233. Furberg S, Solbakk J. On the stereochemistry of the interaction between nucleic acids and basic protein side chains, Acta Chem. Scand, B, 28, 481-483 (1974).

1234. Woo N.H., Seeman N.C., Rich A. Crystal structure of putrescine diphosphate: A model system for amine-nucleic acid interactions, Biopolymers, 18, 539—552 (1979).

1235. Saenger W., Wagner K. G. An X-ray study of the hydrogen bonding in the crystalline L-arginine phosphate monohydrate complex, Acta Crystallogr, B, 28, 2237-2244 (1972).

1236. Leng M., Felsenfeld G. The preferential interactions of polylysine and polyarginine with specific base sequences in DNA, Proc. Nat. Acad. Sci. USA, 56, 1325-1332 (1966).

1237. Subirana J. A., Chiva M, Mayer R. X-Ray diffraction studies of complexes of DNA with lysine and with lysine-containing peptides. In: Biomolecular Structure, Conformation. Function and Evolution, I (R. Srinivasan, N. Yathindra, and E. Subramanian, eds.), pp. 431-440, Pergamon Press, New York, 1980.

1238. Suau P., Subirana J. A. X-Ray diffraction studies of nucleoprotamine structure, J. Mol. Biol, 117, 909-926 (1977).

1239. Tsuboi M. Helical complexes of poly-L-lysine and nucleic acids. In: Conformation of Biopolymers (G. H. Ramachandran, ed.), Vol. II, pp. 689-702, Academic Press, New York, 1967.

1240. Campos J. L, Subirana J. A., Ayami J., Mayer R, Giralt E, Pedroso E. The conformational versatility of DNA in the presense of basic peptides, Stud. Biophys, 81, 3-14 (1980).

1241. Prescott В., Chou С. H., Thomas G. J., Jr., A Raman spectroscopic study of complexes of polylysine with deoxiribonucleic acid and polyriboadenylic acid, J. Phys. Chem., 80, 1164-1171 (1976).

1242. Haynes M, Garrett R. A., Gratzer W.B. Structure of nucleic acid-poly base complexes, Biochemistry, 22, 4410-4416 (1970).

1243. Feughelman M, Langridge R, Seeds W.E., Stokes A. R, Wilson H. R, Hooper C. W., Wilkins M. H. F., Barclay R. K., Hamilton L. D. Molecular structure of deoxyribose nucleic acid and protein, Nature, 175, 834-838 (1955).

1244. Wilkins M. H. F. Physical studies of the molecular structure of deoxyribose nucleic acid and nucleoprotein, Cold Spring Harbor Symp. Quant Biol, 21, 75-90 (1956).

1245. Liquier J., Pinot-Lafaix M., Taillandier E., Brahms J. Infrared linear dichroism investigations of deoxiribonucleic acid complexes with poly (L-arginine) and poly(L-lysine),Biochemistry, 14, 419L4197 (1975).

1246. Ong E. C, Snell C, Fasman G. D., Chromatin models. The ionic strength dependence of model hystone-DNA interactions: Circular dichroism studies of lysine-leucine polypeptide-DNA complexes, Biochemistry, 15, 468-486 (1976).

1247. Zimmer Ch., Burckhardt G., Luck G. Similarity of the conformational changes of DNA in the complex with poly-L-histidine and in the presence of polyethylen-glycol, Stud. Biophys, 40, 57-62 (1973).

1248. Standke K.-H., Brunnert H. The estimation of affinity constants for the binding of model peptides to DNA by equilibrium dialysis, Nucl. Acids Res, 2, 1839-1849 (1975).



1249 Brown P. Е. The interaction of basic dipeptide methyl esters with DNA, Biochim. Biophys. Acta, 213, 282 287 (1970).

[1250. Durand M., Maurizot J.-C, Borazan H. N., Helene C. Interaction of aromatic residues of proteins with nucleic acids. Cicrular dichroism studies of the binding .of oligopeptides to poly(adenylic acid), Biochemistry, 14, 563-570 (1975).

1251. Gabbay E.J., Sanford K., Baxter C.S., Kapicak L. Specific interaction of peptides with nucleic acids, Evidence for a "selective bookmark" recognition hypothesis, Biochemistry, 12, 4021-4029 (1973).

1251a.P6rscWce D, Ronnenberg J. The reaction of aromatic peptides with double helical DNA. Quantitative characterization of a two-step reaction scheme, Biophys. Chem., 13, 283-290 (1981).

1252. Warrant R. W., Kim S.-H. a-Helix-double helix interaction shown in the structure of a protamine-transfer RNA complex and a nucleoprotamine model, Nature, 271, 130-135 (1978).

1253. Inoue S., Fuke M. An electron microscope study of deoxyribonucleoprotamines, Biochim. Biophys. Acta, 204, (1970).

1254. Bazett-Jones D. P., Ottensmeyer F. P. A model for the structure of nucleoprotamine, J. Ultrastruct. Res, 67, 255^266 (1979).

1255. Chandrasekhar K., McPherson A., Jr., Adams M. J., Rossman M. G. Conformation of coenzyme fragments when bound to lactate dehydrogenase, J.Mol. Biol, 76, 503-518 (1973).

1256. Moras D., Olsen K. W, Sabesan M. N., Buehner M, Ford G. C, Rossman M. G. Studies of aymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehoydrogenase, J. Biol. Chem, 250, 9137-9162 (1975).

1257. Webb L. E., Hill E. J., Banaszak L. J. Conformation of nicotinamide adenine dinucleotide bound to cytoplasmatic malate dehydrogenase, Biochemistry, 12, 5101-5109 (1973).

1258. Nordstrom В., Branden C.-I. The binding of nucleotides to horse liver alcohol dehydrogenase. In: Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions (M. Sundaralingam and S.T. Rao, eds.), pp. 387-395, Univ. Park Press, Baltimore 1975.

1259. Matthews D. A., AldenR.A., Freer S. T, Xuong N.-H., Kraut J. Dihydrofolate reductase from Lactobacillus casei, Stereochemistry of NADPH binding, J. Biol. Chem, 254, 4144-4151 (1979).

1260. Montheilet C, Blow D. M, Binding of tyrosine, adenosine triphosphate and analogues to crystalline tyrosyl transfer RNA synthetase, J. Mol. Biol, 122, 407-417 (1978).

1261. Morikawa K., Cour T.F.M. La Cow, Nyborg J., Rasmussen K.M., Miller D.L., Clark B. F. C. High resolution X-ray crystallographic analysis of a modified from of the elongation factor Tu: Guanosinediphosphate complex, J. Mol. Biol, 125, 325-338 (1978).

1262. Shohan M., Steitz T.A. Crystallographic studies and model building of ATP at the active site of hexokinase, J. Mol. Biol, 140, 1-14 (1980).

1263. Richards F.M., Wyckoff H. W. Ribonuclease-S. In: Atlas of Molecular Structures in Biology (D. C. Phillips and F. M. Richards, eds.), Vol. 1, Oxford Press, London, 1973.

1264. Wodak S. Y., Liu M. Y., Wyckoff H. W. The structure of cytidylyl(2',5') adenosine when bound to pancreatic ribonuclease S, J. Mol. Biol, 116, 855^875 (1977).

1265. Cotton F. A., Hazen E.A., Legg M.J. Staphylococcal nuclease: Proposed mechanism of action based on structure of enzyme-thymidine 3',5'-biphos-



phate-calcium ion complex at 1,5 A resolution, Proc. Nat. Acad. Sci. USA, 76, 2551-2555 (1979).

1266. Stubbs G, Warren S., Holmes K.C. Structure of RNA and RNA binding site in tobacco mosaic virus from 4 A map calculated from X-ray fibre diagrams, Nature, 267, 216-221 (1977).

1267. Stubbs G, Stauffacher C. Protein RNA interactions in tobacco mosaic virus, Biophys. J., 32, 244-246 (1980).

1268. Holmes К. C. Protein-RNA interactions during the assembly of tobacco mosaic virus, Trends Biochem. Sci, 5, 4-7 (1980).

1269. Raw S.T., RossmannM.G. Comparison of super-secondary structures in proteins, J. Mol. Biol, 76, 241-256 (1973).

1270. Rossmann M. G, Liljas A., Branden C-H, Banaszak L. J. Evolutionary and structural relationships among dehydrogenases. In: The Enzymes, Vol. XI, pp. 61-102, Academic Press, New York, 1975.

1271. Buehner M. The architecture of the coenzyme binding domain in dehydrogenases as revealed by X-ray structure analysis. In: Protein-Ligand Interactions (H. Sund and G. Blauer, eds.), pp. 78-96, de Gruyter, Berlin, 1975.

1272. Павловский А. Г., Падюкова Н.Ш., Карпейский М.Я. Структура кристаллических комплексов рибонуклеазы с 8-замещенными пуриновыми нуклеотидами. ДАН, 1978, 242, 961-964.

1272а. Heinemann 17, Saenger W. Specific protein-nucleic acid recognition in ribonuclease Tj-^-guanilic acid complex: an X-ray study, Nature, .299 (1982).

1273. Hoi W.G.J., Duijenen P.T. van, Berendsen H.C. The a-helix dipole and the properties of proteins, Nature, 273, 443-446 (1978).

1274. Harrison S. C. Virus crystallography comes of age, Nature, 286, 558-559 (1980).

1275. Bloomer A.C., Champness J.N-, Bricogne G, Staden R, Klug A. Protein disk of tobacco mosaic virus at 2,8 A resolution showing the interactions within and between subunits, Nature, 276, 362-368 (1978).

1276. Zimmer Ch. Effects of the antibiotics netropsin and distamycin A on the structure and function of nucleic acids, Proc. Nucl. Acid Res. Mol. Biol, 15, (1975).

1277. Berman H. M., Neidle S., Zimmer Ch., Thrum H. Netropsin, a NDA-binding oligopeptide. Structural and binding studies, Biochim. Biophys. Acta, 561, 124-131 (1979).

1278. Anderson W.F., Ohledorf D. H., Takeda Y, Matthews B.W. Structure of the cro repressor from bacteriophage X and its interaction with DNA, Nature, 290, 754-758 (1981).

1279. Ptashne M., Jeffrey A., Johnson A. D., Maurer R, Meyer B.J., Pabo CO.. Roberts T.M., Sauer R.T. How the X repressor and cro work, Cell, 19, (1980).

l279a.Matthews B.W., Ohlendorf D.H., Anderson W. F., Fisher R.G., Takeda Y. How does cro repressor recognize its DNA target sites? Trends Biochem. Sci, 8, 25-29 (1983).

1279b.Pobo CO., Lewis M. The operator-binding domain of repressor: structure and

DNA recognition, Nature, 298, 443^47 (1982). 1279c. Ptashne M, Johnson A. D., Pabo С. О. A genetic switch in a bacterial virus, Sci.

Amer, 247(5), 106-120 (1982). 1279d.MottftewsB.lv:, Ohlendorf D.H., Anderson W. F., Takeda Y. Structure of

DNA-binding region of lac repressor inferred from its homology wito сто

repressor, Proc. Nat. Acad. Sci. USA, 79, 1428-1432 (1982).

1280. McKay D.B., Steitz ТА. Structure of catabolite gene activator protein at 2,9 A resolution suggests binding to left-handed B-DNA, Nature, 290, 744-749 (1981).

1281. Gupta G, Bansal M, Sasisekharan V. Conformational flexibility of DNA:



Polymorphism and handedness, Proc. Nat. Acad. Sci. USA, 77, 6486-6490 (1980).

l2Sla.AIbiser G, Premilat S. A critical analysis of a left-handed double helix model for B-DNA fiber, Nucl. Acids Res, 10, 4027-1034 (1982).

\2Slb.Salemme F.R. A model for catabolite activator protein binding to supercoiled DNA, Proc. Nat. Acad. Sci. USA, 79, 5263-5267 (1982).

1281c.Sfeirz T.A., Ohlendorf D.H., McKay D.B., Anderson W.F., Matthews B. W. Structural similarity in the DNA-binding domains of catabolite gene activator and cro repressor proteins, Proc. Nat. Acad. Sci. USA, 79, 3097-3100 (1982).

1282. Kornberg A. DNA Replication, p. 485, Freeman, San Francisco, 1980.

1283. Day L. A. Circular dichroism and ultraviolet absorption of a deoxyribonucleic acid binding protein of filamentous bacteriophage, Biochemistry, 12, 2529-5359 (1973).

1284. Coleman J.E., Anderson R. A., Ratcliffe R.G., Armitage I.M. Structure of gene 5 protein-oligodeoxynucleotide complexes as determined by 'H, 19F and 31P nuclear magnetic resonance, Biochemistry, 15, 5419-5430 (1976).

1285. Coleman J. E., Oakley H. L. Physical chemical studies of the structure and function of DNA binding (helix-destabilizing) proteins, CRC Crit. Rev. Biochem, 7, 247-289 (1980).

1286. Alberts B, Frey L., Delius H. Isolation and characterization of gene 5 protein of filamentous bacterial viruses, J. Mol. Biol, 68, 139-152 (1972).

1287. Torbet J., Gray K.M., Gray C.W., Marvin D. A., Siegrist H. Structure of fd DNA-gene 5 protein complex in solution. A neutron smallangle scattering study, J. Mol. Biol, 146, 305-320 (1981).

1288. Blace C.C.F., Oatley S.J. Protein-DNA and protein-hormone interactions in prealbumin: A model of the thyroid hormone nuclear receptor? Nature, 268, 115-120 (1977).

1289. Schuh G. E., Schirmer H. Principles of Protein Structure, Springer Verlag, New York, 1979.

1289a.Gierer A. Model for DNA and protein interactions and the function of the

operator, Nature, 212, 1480-1481 (1966). 1289b.Jow'n T.M. Recognition mechanisms of DNA-specific enzymes, Annu. Rev.

Biochem, 45, 889-920 (1976). 1289c.LiMey D. M. J. Hairpin-loop formation by inverted repeats in supercoiled DNA

is a local and transmissible property, Nucl. Acids Res, 9, 1271-1289 (1981). l2S9d.Panayotatos N., Wells R.D. Cruciform structures in supercoiled DNA, Nature,

289, 466^170 (1981).

1289e.Lira V.I., Mazanov A.L. Tertiary structure for palindromic regions of DNA,

FEBS Lett, 88, 118-123 (1978) 1289f.Stasiak A., Klopotowski T. Four stranded DNA structure and DNA methylation

in the mechanism of action of restriction endonucleases, J. Theor. Biol, 80,

65-82 (1979).

1289g. Momany F. A., McGuire R.F., Burgess A. W., Scheraga H.

страница 75
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Скачать книгу "Принципы структурной организации нуклеиновых кислот" (9.68Mb)

[каталог]  [статьи]  [доска объявлений]  [обратная связь]

Rambler's Top100 Химический каталог

Copyright © 2009