Биологический каталог




Структура и поведение ДНК

Автор неизвестен

Генетическая информация у всех клеток закодирована в виде последовательности нуклеотидов в дезоксирибонуклеиновой кислоте (ДНК). Первый этап реализации этой информации состоит в образовании родственной ДНК молекулы—рибонуклеиновой кислоты (РНК), которая в свою очередь участвует в синтезе специфических белков. Фенотипические признаки любого организма в конечном счете проявляются в разнообразии и количестве белков, кодируемых ДНК. Информационная связь между молекулами генетического аппарата — ДНК, РНК и белками—представлена на рисунке:

Информационная связь между ДНК, РНК и белками

Чтобы генетическая информация могла передаваться от одного поколения клеток к другому, должна происходить репликация ДНК — процесс, в ходе которого родительские молекулы ДНК удваиваются и затем распределяются между потомками. Этот процесс должен осуществляться с большой точностью, а повреждения или случайные ошибки, возникшие в ДНК во время циклов репликации или между ними, необходимо исправить прежде, чем они попадут в геномы потомков. Кроме того, для формирования фенотипа генетическая информация должна экспрессироваться. У всех клеточных организмов экспрессия генов включает копирование ДНК с образованием РНК (транскрипцию) и последующую трансляцию РНК в белки. Как будет показано в гл. 3, при транскрипции образуется несколько типов РНК. Одни из них, матричные РНК (мРНК), кодируют белки, другие участвуют в различных процессах, необходимых для сборки полноценного белка. ДНК не только кодирует ферментативный аппарат клетки; она участвует в процессах репарации, а при определенных условиях в ней могут происходить перестройки. Репликация, репарация и перестройки ДНК — ключевые процессы, с помощью которых организмы поддерживают свойственный им фенотип и изменяют его.

У многих вирусов генетическая информация также закодирована в ДНК. Механизмы репликации, репарации, перестройки и экспрессии вирусной ДНК аналогичны механизмам, используемым клетками других организмов. Геном некоторых вирусов представлен не ДНК, а РНК. Геномная РНК таких вирусов либо непосредственно транслируется в белки, либо обладает генетической информацией, необходимой для синтеза молекул РНК, которые в свою очередь транслируются в белки. Те вирусы, у которых геном представлен РНК в течение всего жизненного цикла, должны сами реплицировать родительскую РНК для получения потомства вирусных частиц. Существует класс ретровирусов, репродуктивный цикл которых начинается с того, что их генетическая информация в ходе так называемой обратной транскрипции переводится на язык ДНК. Полученные копии ДНК, или провирусы, способны к репликации и экспрессии только после интеграции в хромосомную ДНК клетки. В такой интегрированной форме вирусные геномы реплицируются вместе с ДНК клетки-хозяина, и для образования нового поколения вирусных геномов и мРНК, нужной для синтеза вирусных белков, они используют транскрипционный аппарат клетки.
Ключевым моментом в передаче генетической информации между нуклеиновыми кислотами, будь то репликация, транскрипция или обратная транскрипция, является то, что молекула нуклеиновой кислоты используется в качестве матрицы в направленной сборке идентичных или родственных структур. Насколько известно, информация, хранящаяся в белках, не используется для сборки соответствующих нуклеиновых кислот, т.е. обратная трансляция не обнаружена. Тем не менее белки играют ключевую роль в процессах передачи информации как между нуклеиновыми кислотами, так и от нуклеиновых кислот к белкам.

Структура и поведение ДНК

Компоненты молекулы ДНК и соединяющие их химические связи. С помощью химических и физических методов установлено, что ДНК — это полимер, состоящий из четырех разных, но родственных мономеров. Каждый мономер — нуклеотид — содержит одно из четырех гетероциклических азотистых оснований: аденин (А), гуанин (G), цитозин (С) или тимин (Т), связанное с дезоксирибозофосфатом:

Дезоксирибонуклеотиды
Дезоксирибонуклеотиды. Цифрами обозначены положения атомов в гетероциклических кольцах пуринов
(аденин и гуанин) и пиримидинов (тимин и цитозин) и углеродных атомов в дезоксирибозе.

Длинные полинуклеотидные цепи образуются путем соединения дезоксирибозных остатков соседних нуклеотидов с помощью фосфодиэфирных связей:


Рисунок: связь между соседними дезоксирибонуклеотидами в полинуклеотидной цепи. В правом нижнем углу рисунка показаны некоторые способы схематического изображения дезоксирибонуклеотидной последовательности. Нуклеотидную последовательность принято изображать слева направо, от 5'- к З'-концу.
Таблица: частоты встречаемости некоторых ближайших соседей в различных ДНК

Каждый фосфат соединяет гидроксильную группу (ОН) при З'-углеродном атоме дезоксирибозы одного нуклеотида с ОН-группой при 5'-углеродном атоме дезоксирибозы соседнего нуклеотида. Частота встречаемости в определенном соседстве любых двух оснований в ДНК бактерий, бактериофагов и дрожжей зависит от количественного содержания этих оснований в ДНК (см. таблицу выше). Частота встречаемости 5'-CG-3' и 5'-GC-3' в ДНК прокариот почти одинакова и близка к случайной; то же самое можно сказать и о динуклеотидах 5'-GA-3' и 5'-AG-3'. Однако в ДНК животных, вирусов животных и растений частоты встречаемости 5'-CG-3' составляют от 1/2 до 1/5 частот 5'-GC-3'. Таким образом, последовательность 5'-CG-3' встречается в ДНК высших эукариот довольно редко; это связано со способностью данного динуклеотида служить мишенью при метилировании и с его ролью в регуляции экспрессии генов.

После окончания цикла синтеза ДНК некоторые пуриновые и пиримидиновые основания могут подвергаться химической модификации. В результате в некоторых ДНК содержатся 5-метилцитозин, 5-гидроксиметилцитозин, 5-гидроксиметилурацил и N-метиладенин:

Структурные формулы модифицированных пуринов и
Структурные формулы модифицированных пуринов и
пиримидинов, обнаруженных в ДНК

В ДНК некоторых бактериофагов к гидроксиметильной группе гидроксиметилцитозина присоединены с помощью гликозидной связи моно- или дисахариды. ДНК большинства низших эукариот и беспозвоночных содержат относительно мало 5-метилцитозина и N6-метиладенина. Однако у позвоночных метилирование оснований — частое явление, причем наиболее распространен 5-метилцитозин. Показано, что более 95% метильных групп в ДНК позвоночных содержится в остатках цитозина редко встречающихся CG-динуклеотидов и более 50% таких динуклеотидов метилировано. Существуют четкие указания на то (разд. 8.7), что степень метилирования некоторых CG-содержащих последовательностей является важным фактором регуляции экспрессии определенных генов. У растений 5-метилцитозин можно обнаружить в динуклеотидах CG
и тринуклеотидах CNG (N – C, А или Т).

Спиральная структура ДНК

С помощью физико-химических, электронно-микроскопических и рентгеноструктурных методов показано, что большинство молекул ДНК представляют собой протяженные, гибкие, нитевидные структуры. Этими же методами установлено, что молекула ДНК имеет почти постоянный диаметр и состоит из регулярно расположенных повторяющихся звеньев, причем ее структура не зависит от нуклеотидного состава. Таким образом, в отличие от белков, двух- и трехмерная структура которых обязательно зависит от состава и порядка расположения аминокислот, молекула ДНК в обычных условиях при любом нуклеотидном составе и порядке расположения четырех нуклеотидов представляет собой абсолютно регулярную практически идентичную по всей длине структуру. Такие в какой-то степени парадоксальные химические и физические свойства ДНК порождаются особенностями ее структуры.

Молекула ДНК обычно находится в форме двойной спирали, образуемой двумя полинуклеотидными цепями, обвивающимися одна вокруг другой. Два дезоксирибозофосфатных остова, расположенные по периферии молекулы, имеют антипараллельную ориентацию:

Схематическое и пространственное изображение В-формы двойной спирали ДНК
Схематическое и пространственное изображение В-формы двойной спирали ДНК. Видны большой и малый желобки.
Указаны расстояние между ближайшими парами оснований и шаг спирали.

В наиболее часто встречающейся структурной форме пуриновые и пиримидиновые основания в каждой цепи уложены в стопки с интервалом 0,34 нм и направлены внутрь спирали; плоскости колец примерно перпендикулярны оптической оси спирали. Спираль делает полный оборот каждые 3,4 нм, т.е. через каждые 10 оснований. На наружной ее поверхности имеются два желобка — большой и малый.

Азотистые основания четырех нуклеотидов ДНК не находятся между собой в количественном соотношении 1:1, как это представлено на рис. 1.3. Напротив, молярные отношения двух пуринов, А и G, и двух пиримидинов, Т и G, различны для ДНК разных организмов. В то же время соотношение между пуринами и пиримидинами постоянно и не зависит от источника ДНК, а именно: содержание пуриновых нуклеотидов (A + G) всегда равно содержанию пиримидиновых нуклеотидов (Т + G); число А равно числу Т, и аналогично для G и С. Эти факты и легли в основу предположения, что пуриновые и пиримидиновые нуклеотиды в ДНК спарены, а двойная спираль стабилизируется с помощью водородных связей между пуринами одной цепи ДНК и пиримидинами другой.

Два указанных типа пар оснований, AT и GC, обычно называемых комплементарными парами, преобладают в большинстве ДНК:

Водородные связи между комплементарными основаниями в ДНК
Водородные связи между комплементарными основаниями в ДНК. Видно, что геометрия двух типов пар
оснований практически одинакова

В АТ-паре основания соединены двумя водородными связями: одна из них образуется между амино-и кето-группами, а другая — между двумя атомами азота пурина и пиримидина соответственно. В GC-паре имеются три водородные связи: две из них образуются между амино- и кето-группами соответствующих оснований, а третья — между атомами азота. Образование пар между двумя пуринами, двумя пиримидинами или некомплементарными основаниями (А + С или G + T) стерически затруднено, поскольку при этом не могут образовываться подходящие водородные связи и, следовательно, нарушается геометрия спирали. Модифицированные пурины и пиримидины, с небольшой частотой встречающиеся в ДНК (рис. 1.4), образуют такие же водородные связи, что и их немодифицированные аналоги; тем самым правило спаривания не нарушается. Согласно этим правилам, последовательность оснований в одной цепи определяет их последовательность в другой. Комплементарность последовательности оснований в двух полинуклеотидных цепях — ключевое свойство ДНК.
Дополнительная стабилизация двойной спирали обеспечивается межплоскостными взаимодействиями ароматических колец соседних оснований. Размеры комплементарных пар оснований практически одинаковы; примерно одинаковы также угол и направление связи дезоксирибозаоснование. Расстояние между соседними основаниями равно 0,34 нм, а угол, на который они повернуты друг относительно друга,— 36°. Из всех этих данных следует, что диаметр спирали постоянен, а число пар оснований на виток спирали равно 10. Точные данные о расположении, ориентации в пространстве и размерах различных составляющих ДНК были получены методом рентгеноструктурного анализа волокон ДНК.
 

Альтернативные формы двойной спирали ДНК

Все, о чем мы говорили, касалось наиболее распространенной, так называемой В-формы двойной спирали ДНК. Известны также два других изомерных типа двойной спирали. Они образуются благодаря тому, что валентные углы между основаниями и сахаром могут меняться, а дезоксирибозное кольцо и сахарофосфатный остов достаточно гибки, чтобы могли сформироваться альтернативные конфигурации. Редко встречающаяся А-форма, существующая только при пониженной влажности, отличается от В-формы тем, что плоскости оснований составляют с перпендикуляром к оси спирали угол 20° :

Пространственные модели В-, А- и Z-ДНК
Пространственные модели В-, А- и Z-ДНК (каждая из моделей содержит 20 пар оснований).
Атомы фосфора и связанные с ними атомы кислорода изображены в виде темных шариков, атомы азота – в виде слегка затененных шариков.
Сплошная линия, соединяющая фосфатные группы, показывает ход полинуклеотидной спирали.
Обратите внимание на зигзагообразную форму остова Z-ДНК. А-ДНК короче и толще, а Z-ДНК чуть длиннее и тоньше, чем В-ДНК.
В А-ДНК большой желобок более глубокий, но зато малый уплощен и напоминает обвитую по поверхности ленту.
У Z-ДНК желобок только один, он чуть глубже, чем большой желобок у В-ДНК, но не такой глубокий, как у А-ДНК.

Поэтому расстояние между парами оснований по вертикали уменьшается до 0,29 нм, а число пар на виток увеличивается до 11—12. Какова биологическая функция А-формы ДНК—пока неясно.

Характерной особенностью В-формы ДНК является то, что сахарофосфатные остовы обеих цепей образуют правую спираль. Однако при определенных условиях участки ДНК, для которых характерно чередование пуриновых и пиримидиновых нуклеотидов, принимают форму левой спирали. При этом расстояние между соседними парами оснований увеличивается до 0,77 нм, а число пар на один виток—до 12. Остов молекулы ДНК имеет зигзагообразный вид, поэтому подобная форма получила название Z-ДНК. Вопрос о том, существует ли Z-ДНК в естественных условиях и образуется ли она в определенных участках В-спирали под действием специфических белков, способных переводить В-форму в Z-форму, сейчас интенсивно исследуется.

Размер молекул ДНК

Обычно размер молекулы ДНК выражается в числе пар нуклеотидов, при этом за единицу берется тысяча пар нуклеотидов (т.п.н.). Мол. масса одной т.п.н. В-ДНК равна в среднем 6,6*105, а ее длина составляет 340 нм. Если принять все необходимые меры, чтобы не разрушить ДНК при выделении, и использовать мягкие методы измерения длины, то обнаружится удивительное соответствие между длиной молекулы ДНК и массой одной небольшой хромосомы:

Молекулярная масса, длина и тип структуры ДНК различного происхождения
Молекулярная масса, длина и тип структуры ДНК различного происхождения

Так, молекулы ДНК единственных хромосом, из которых состоят геномы бактериофагов λ и Т4, а также адено- и герпесвирусов, имеют длину, соответствующую числу пар оснований в одной хромосоме, составляющей геном каждого из этих вирусов. Полный геном E.coli (~ 4*106 п.н.) также представлен единственной молекулой ДНК и имеет длину 1,4 мм. Есть все основания считать, что каждая из хромосом дрожжей, Drosophila и даже человека состоит из одной молекулы ДНК размером от нескольких десятков тысяч до многих миллионов пар нуклеотидов.

Разнообразие форм ДНК

Существовавшее до недавнего времени мнение о том, что В-ДНК — это совершенная двойная спираль, геометрия которой одинакова независимо от нуклеотидной последовательности, в действительности не совсем корректно. Детальный рентгено-структурный анализ, построение моделей и термодинамические расчеты показали, что плоскости соседних пар оснований не строго параллельны. Каждая комплементарная пара оснований является как бы клином, отклоняющим ось спирали в одном или в другом направлении. Наибольший «крен» наблюдается тогда, когда два соседних аденина в одной цепи спарены с двумя тиминами другой. В этом месте происходит локальное искривление спирали. Если такие пары встречаются с периодичностью примерно один раз на 10 пар (т.е. один раз на каждый виток спирали), то молекула ДНК приобретает заметно искривленную форму. Искривленная, или изогнутая, структура была, например, обнаружена в линейных фрагментах ДНК кинетопластов трипаносомы Leishmania tarentolae по аномально малой подвижности этих фрагментов при электрофорезе в полиакриламидном геле. Изгибы в молекуле ДНК наблюдаются в тех участках последовательности, где с необычно высокой частотой встречаются повторы (А•Т)5–6, разделенные GC-богатыми участками из четырех-шести нуклеотидов. Биологическая роль искривления ДНК окончательно не установлена. Предрасположенность к такому изгибанию, зависящая от последовательности оснований, может иметь значение при наматывании молекулы ДНК на гистоновые октамеры в хроматине. Возможно, изгибание ДНК существенно и при специфическом связывании ДНК с белками в процессе регуляции экспрессии генов.

ДНК может находиться в линейной или кольцевой форме:

Схематическое представление и электронные микрофотографии линейной и кольцевой двухцепочечной ДНК
Схематическое представление и электронные микрофотографии линейной (А) и кольцевой (Б) двухцепочечной ДНК фага λ

Бактериальные плазмиды, хромосомы некоторых бактерий, большинство митохондриальных и хлоропластных ДНК, геномы вирусов млекопитающих представлены единственной ковалентно замкнутой кольцевой дуплексной молекулой ДНК. Хромосома бактериофага λ на разных стадиях жизненного цикла существует то как линейная молекула, то как замкнутая кольцевая структура, то как кольцо с разрывами. По-видимому, никакого верхнего предела для размера кольцевой двухцепочечной молекулы ДНК не существует.

ДНК в клетке обычно находится в комплексе с белками. Связанный белок слегка раскручивает спираль ДНК, соответственно и число витков спирали на единицу длины становится меньше, чем у свободной В-ДНК. При удалении белка восстанавливается обычное число правозакрученных (положительных) витков спирали. В линейной молекуле ДНК это происходит достаточно легко, поскольку обе цепи свободно вращаются одна вокруг другой. В замкнутой же кольцевой молекуле общее число витков спирали топологически фиксировано, и число оборотов одной цепи вокруг другой не может быть изменено без компенсаторного образования витков противоположного знака где-нибудь в другом месте молекулы. Итак, когда естественные кольцевые дуплексы освобождаются от белков, с которыми они часто бывают связаны in vivo, происходит следующее:

1) число правозакрученных (положительных) витков спрали возрастает до величины, характерной для В-ДНК;
2) в самом дуплексе образуется столько же витков противоположного знака, чтобы компенсировать увеличение скрученности спирали.

О таких молекулах говорят, что они обладают отрицательной сверхспиральностью:

сверхспиральная кольцевая ДНК
А. Схематическое изображение сверхспиральной кольцевой ДНК и релаксированных кольцевых форм, полученных либо в результате разрыва одной из двух цепей,
либо в результате локального расхождения двух цепей
Б. Двухцепочечная кольцевая ДНК фага М13 с разной степенью сверхспиральности. Цифрами обозначено число сверхвитков в каждой молекуле.

При внесении одного разрыва в сверхспиральную кольцевую ДНК сверхспиральность снимается и кольцевая структура переходит в релаксированное состояние, при котором топологические ограничения отсутствуют. Любые химические или физические изменения, приводящие к уменьшению числа витков спирали на молекулу, уменьшают или вообще снимают отрицательную сверхспиральность в замкнутой кольцевой ДНК.

Не все ДНК in vivo являются двухцепочечными. Геномы некоторых мелких вирусов бактерий, растений и животных представляют собой ковалентно замкнутые кольца, состоящие только из одной цепи:

лектронные микрофотографии одно- и двухцепочечных кольцевых ДНК фага М13
Электронные микрофотографии одно- и двухцепочечных кольцевых ДНК фага М13. Двухцепочечная ДНК
выглядит более гладкой и вытянутой и ее легче визуализировать, чем одноцепочечную

Все известные одноцепочечные кольцевые ДНК относительно малы: ДНК бактериофагов φХ174 и М13 содержат примерно 5300 и 6000 нуклеотидов соответственно и имеют длину 1,5—2 мкм; длина молекул ДНК парвовирусов животных и некоторых вирусов растений составляет 2/3 и 1/2 указанных величин соответственно. Однако для репликации любой из этих вирусных ДНК совершенно необходимо превращение одноцепочечного кольца в соответствующее двухцепочечное, из которого затем образуются одноцепочечные кольцевые ДНК вирусного потомства. Более того, экспрессия генетической информации в таких геномах всегда осуществляется в фазе двухцепочечной ДНК, поскольку именно она является субстратом для транскрипции последовательности ДНК в РНК.

Денатурация и ренатурация ДНК

Водородные связи и межплоскостные взаимодействия, стабилизирующие двойную спираль, достаточно слабы, и при относительно небольших воздействиях происходит разделение цепей—процесс, именуемый денатурацией, или плавлением:

Денатурация ДНК при повышении температуры
Денатурация (диссоциация) двухцепочечной ДНК при повышении температуры раствора
и ренатурация (реассоциация) двух комплементарных цепей при охлаждении

Двухцепочечная спиральная ДНК в растворе легко разрушается при нагревании до температур, близких к 100°С. Денатурация происходит также при увеличении рН раствора до уровня, при котором разрушаются водородные связи между основаниями. Многие факторы (например, одно- и двухвалентные катионы, полиамины и белки) влияют на денатурацию, нейтрализуя частично или полностью отрицательно заряженные фосфатные группы остова молекулы. Интервал значений температуры или рН, при которых происходит разделение цепей, очень невелик:

Кривые денатурации типичной двухцепочечной ДНК
Кривые денатурации типичной двухцепочечной ДНК, получаемые при повышении температуры и рН.
Тт и рНm - это значения температуры и рН соответственно, при которых ДНК денатурирована (или ренатурирована) наполовину

Поскольку для разрушения двух водородных связей АТ-пар требуется меньше энергии, чем для разрыва трех водородных связей GС-пар, значения температуры и рН, при которых происходит денатурация, зависят от нуклеотидного состава ДНК. Чем выше содержание GС-пар, тем выше Тт или рНm:

Зависимость Tm от молярного содержания гуанина и цитозина в ДНК
Зависимость Tm от молярного содержания гуанина и цитозина в ДНК при низкой и высокой концентрации соли.
Точки отвечают индивидуальным ДНК бактерий, бактериофагов, дрожжей, растений и животных

Денатурация — процесс обратимый, последующее восстановление двухцепочечной структуры ДНК может происходить даже при полном расхождении цепей. Процесс воссоединения, называемый ренатурацией, реассоциацией или отжигом, происходит при понижении температуры или рН. Если температура или рН понижаются постепенно, то цепи соединяются правильно, с восстановлением всех исходных пар оснований. При резком понижении температуры или рН правильное воссоединение комплементарных цепей затрудняется из-за спаривания оснований локально комплементарных участков в пределах одной или разных цепей:

Ренатурация комплементарных цепей ДНК
Ренатурация комплементарных цепей ДНК при плавном (слева) и резком (справа) понижении температуры или
рН раствора

Диссоциация (денатурация) и реассоциация (ренатурация) ДНК в растворе являются по сути искусственным воссозданием процессов, играющих ключевую роль в реализации разнообразных биологических функций in vivo. Очень важным для дальнейшего изложения представляется то, что способность двух отдельных комплементарных цепей нуклеиновой кислоты воссоединяться с образованием исходной структуры является ключевым моментом для проведения соответствующих опытов in vitro, а также для выделения, сравнения и идентификации специфических нуклеиновых кислот. Уникальная способность нуклеиновой кислоты образовывать двойные спирали путем ассоциации одиночных комплементарных цепей имеет огромное значение для самых разных областей генетики.

Упаковка ДНК в хромосомах

В клетках или вирусах ДНК, по-видимому, никогда не находится в свободной, вытянутой форме. Она связана с низкомолекулярными катионами — ионами двухвалентных металлов либо с ди- и полиаминами или белками, а возможно, с теми и с другими. Взаимодействие осуществляется с помощью электростатических сил — отрицательно заряженные фосфатные группы частично нейтрализуются положительно заряженными ионами металлов и полиаминами или основными аминокислотными остатками белков. В результате таких взаимодействий происходит конденсация ДНК с уменьшением объема, занимаемого молекулой, иногда в тысячу раз. Кольцевая ДНК Е. coli длиной 1,4 мм заключена в клетку, имеющую форму палочки диаметром 1 мкм и длиной 2 мкм; у эукариотических клеток ядерная ДНК длиной почти 2 м в стадии интерфазы заключена в ядре диаметром менее 10 мкм. Ядерная ДНК в клетках, находящихся в стадии митоза, конденсирована еще больше и в световом микроскопе имеет вид очень компактной структуры.

Хромосомы эукариот. Хромосомы эукариотических клеток состоят в основном из хроматина — комплекса двухцепочечной ДНК и пяти гистоновых белков, обозначаемых H1, Н2А, Н2В, Н3 и Н4. Гистоны могут быть ацетилированы, метилированы, фосфорилированы, роlу(АDР)-рибозилированы, а гистоны Н2А и Н2В — ковалентно связаны с белком, называемым убиквитином. Какова роль воздействия указанных компонентов на структуру и функции гистонов — до конца не выяснено. Гистон H1 млекопитающих состоит из примерно 215 аминокислот; размеры других гистонов варьируют от 100 до 135 аминокислот. Все они содержат необычно большое количество положительно заряженной аминокислоты лизина; Н3 и Н4 отличаются от других тем, что у них достаточно высок уровень положительно заряженной аминокислоты аргинина. Соотношение между Н2А, Н2В, Н3 и Н4, содержащимися в хроматине низших эукариот (дрожжи, плесневые грибы), такое же, как в хроматине млекопитающих.

На электронно-микроскопических фотографиях в зависимости от условий выделения и степени растяжения хроматин выглядит либо как длинное волокно диаметром 10 нм, либо чаще как более вытянутое волокно с утолщениями — «бусинками» диаметром 10 нм, нанизанными по всей длине волокна с определенными интервалами:

Электронные микрофотографии хроматина
Электронные микрофотографии хроматина.
А. Волокно хроматина диаметром 10 нм из почечных клеток CV1 обезьяны.
Б. Хроматин из эритроцитов цыпленка, имеющий вид нити с нанизанными на нее бусинками.

Каждая из этих бусинок представляет собой нуклеосомный кор, на который намотан сегмент хромосомной ДНК длиной 145 пар оснований. Кор — это гистоновый октамер, состоящий из гистонов Н2А, Н2В, Н3 и Н4, по две молекулы каждого вида:

Модель нуклеосомного кора
Модель нуклеосомного кора, построенная по данным кристаллографического анализа низкого и высокого разрешения.
Сегмент ДНК (145 пар оснований), изображенный в виде трубки, обвивает гистоновый октамер, делая вокруг него 13/4 оборота

Молекула ДНК, обвиваясь 13/4 раза вокруг нуклеосомного кора, образует сверхспираль.

Пятый гистон, H1, не входит в состав нуклеосомного кора и не участвует в процессе наматывания ДНК на гистоновый октамер. Он контактирует с ДНК в тех местах, где двойная спираль входит и выходит из нуклеосомного кора:


Гистон Н1 «сшивает» ДНК в местах, где она начинает и прекращает наматываться на нуклеосомный кор

В такой структуре с одним гистоновым октамером и молекулой гистона H1 ассоциированы 168 пар оснований спиральной ДНК. Как мы уже отмечали, на электронно-микроскопических фотографиях хроматин часто обнаруживается в двух альтернативных формах: в форме волокна с четко разделенными нуклеосомами (нуклеосомы имеют вид бусинок, нанизанных на нитку) или в форме волокна диаметром 10 нм, в котором нуклеосомы упакованы бок о бок по всей его длине. Волокно диаметром 10 нм может подвергаться дальнейшей конденсации с образованием структур более высокого порядка. При этом нуклеосомы, по всей видимости, образуют соленоид — структуру диаметром 30 нм:


Структура хроматина с разной степенью конденсации.
В нижней части рисунка представлен хроматин, находящийся в растянутой форме; он имеет вид нити с нанизанными на нее бусинками.
Далее изображен хроматин в частично конденсированной форме, представляющий собой волокно диаметром 10 нм.
В верхней части рисунка представлен хроматин в наиболее конденсированном состоянии, когда волокно диаметром 10 нм образует соленоид диаметром 30 нм.
Обратите внимание на взаимодействие молекул гистона Н1, связанных с каждой нуклеосомой, которое способствует конденсации волокна диаметром 10 нм в более плотную структуру

В результате взаимодействия ДНК с гистонами сегмент двойной спирали ДНК из 168 пар оснований со средним диаметром 2 нм и длиной 57 нм превращается в спираль диаметром 10 нм и длиной 5 нм. При последующем сжатии этой спирали до волокна диаметром 30 нм степень конденсации увеличивается еще в шесть раз. Таким образом, упаковка дуплекса ДНК с пятью гистонами приводит к 50-кратной конденсации ДНК. Однако даже столь высокая степень конденсации не может объяснить почти 5000-кратное уплотнение ДНК в метафазной хромосоме.

Эукариотический хроматин содержит и другие белки, которые обычно называют негистоновыми. Некоторые из них, например ферменты, необходимые для репликации и экспрессии ДНК, могут связываться с хроматином временно. Белки, принимающие участие в различных процессах регуляции, связываются с ДНК только в специфических тканях или на определенных стадиях дифференциации. Все эти вопросы, а также роль альтернативных способов организации хроматина в процессах репликации и экспрессии мы детально рассмотрим в последующих главах.

Хромосомы прокариот. Насколько известно, в упаковке прокариотической геномной ДНК участвуют только два или три белка. О природе взаимодействия этих белков с ДНК и о структуре конденсированного комплекса белокнуклеиновая кислота известно немного. У Е. coli, по-видимому, существует лишь один белок или один класс ДНК-связывающих белков, называемых HU-белками; по своему размеру, содержанию лизина и аргинина, антигенным свойствам они сходны с эукариотическим гистоном Н2А. Другой белок, белок II, обнаруженный у Е. coli и цианобактерий, по повышенному содержанию лизина и ДНК-связывающим свойствам также напоминает эукариотический гистон. Белки HU и II обнаружены в количествах, достаточных для образования комплекса по крайней мере с половиной ДНК Е. coli и, по-видимому, совместно с полиаминами и еще неизвестными нам белками могут осуществлять те же самые функции при конденсации и упаковке ДНК, что и пять эукариотических гистонов.


[каталог]  [статьи]  [доска объявлений]  [обратная связь]

Возможность программировать клетки Гаряев лечение звуком. п»їкосметика с Мертвого моря, лечебная | ветеринарная справка для собаки Библиотека имени Ленина
Rambler's Top100 Химический каталог

Copyright © 2009
(27.09.2016)